TY - JOUR
T1 - 570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition
AU - Zhou, Xinghao
AU - Liu, Rui
AU - Sun, Ke
AU - Papadantonakis, Kimberly M.
AU - Brunschwig, Bruce S.
AU - Lewis, Nathan S.
N1 - Funding Information:
This work was supported by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. Atomic-force microscopy and UV-Vis spectroscopy were performed at the Molecular Materials Resource Center (MMRC) of the Beckman Institute at the California Institute of Technology. This work was additionally supported by the Gordon and Betty Moore Foundation under Award No. GBMF1225.
PY - 2016/3
Y1 - 2016/3
N2 - Heterojunction photoanodes, consisting of n-type crystalline Si(100) substrates coated with a thin ∼50 nm film of cobalt oxide fabricated using atomic-layer deposition (ALD), exhibited photocurrent-onset potentials of -205 ± 20 mV relative to the formal potential for the oxygen-evolution reaction (OER), ideal regenerative solar-to-O2(g) conversion efficiencies of 1.42 ± 0.20%, and operated continuously for over 100 days (∼2500 h) in 1.0 M KOH(aq) under simulated solar illumination. The ALD CoOx thin film: (i) formed a heterojunction with the n-Si(100) that provided a photovoltage of 575 mV under 1 Sun of simulated solar illumination; (ii) stabilized Si photoanodes that are otherwise unstable when operated in aqueous alkaline electrolytes; and, (iii) catalyzed the oxidation of water, thereby reducing the kinetic overpotential required for the reaction and increasing the overall efficiency relative to electrodes that do not have an inherently electrocatalytic coating. The process provides a simple, effective method for enabling the use of planar n-Si(100) substrates as efficient and durable photoanodes in fully integrated, photovoltaic-biased solar fuels generators.
AB - Heterojunction photoanodes, consisting of n-type crystalline Si(100) substrates coated with a thin ∼50 nm film of cobalt oxide fabricated using atomic-layer deposition (ALD), exhibited photocurrent-onset potentials of -205 ± 20 mV relative to the formal potential for the oxygen-evolution reaction (OER), ideal regenerative solar-to-O2(g) conversion efficiencies of 1.42 ± 0.20%, and operated continuously for over 100 days (∼2500 h) in 1.0 M KOH(aq) under simulated solar illumination. The ALD CoOx thin film: (i) formed a heterojunction with the n-Si(100) that provided a photovoltage of 575 mV under 1 Sun of simulated solar illumination; (ii) stabilized Si photoanodes that are otherwise unstable when operated in aqueous alkaline electrolytes; and, (iii) catalyzed the oxidation of water, thereby reducing the kinetic overpotential required for the reaction and increasing the overall efficiency relative to electrodes that do not have an inherently electrocatalytic coating. The process provides a simple, effective method for enabling the use of planar n-Si(100) substrates as efficient and durable photoanodes in fully integrated, photovoltaic-biased solar fuels generators.
UR - http://www.scopus.com/inward/record.url?scp=84960834547&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84960834547&partnerID=8YFLogxK
U2 - 10.1039/c5ee03655k
DO - 10.1039/c5ee03655k
M3 - Article
AN - SCOPUS:84960834547
VL - 9
SP - 892
EP - 897
JO - Energy and Environmental Science
JF - Energy and Environmental Science
SN - 1754-5692
IS - 3
ER -