TY - JOUR
T1 - A Pyridine Alkoxide Chelate Ligand That Promotes Both Unusually High Oxidation States and Water-Oxidation Catalysis
AU - Michaelos, Thoe K.
AU - Shopov, Dimitar Y.
AU - Sinha, Shashi Bhushan
AU - Sharninghausen, Liam S.
AU - Fisher, Katherine J.
AU - Lant, Hannah M.C.
AU - Crabtree, Robert H.
AU - Brudvig, Gary W.
N1 - Funding Information:
This work (L.S.S., S.B.S., D.Y.S., T.K.M., H.M.C.L., K.J.F.) was supported the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Award Number DESC0001059 as part of the Argonne-Northwestern Solar Energy Research (ANSER) Energy Frontier Research Center (spectroscopy and characterization) and under Award Number DEFG02-07ER15909 (synthesis). K.J.F. acknowledges support by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1122492.
PY - 2017/4/18
Y1 - 2017/4/18
N2 - Conspectus Water-oxidation catalysis is a critical bottleneck in the direct generation of solar fuels by artificial photosynthesis. Catalytic oxidation of difficult substrates such as water requires harsh conditions, so the ligand must be designed both to stabilize high oxidation states of the metal center and to strenuously resist ligand degradation. Typical ligand choices either lack sufficient electron donor power or fail to stand up to the oxidizing conditions. Our research on Ir-based water-oxidation catalysts (WOCs) has led us to identify a ligand, 2-(2′-pyridyl)-2-propanoate or "pyalk", that fulfills these requirements. Work with a family of Cp*Ir(chelate)Cl complexes had indicated that the pyalk-containing precursor gave the most robust WOC, which was still molecular in nature but lost the Cp* fragment by oxidative degradation. In trying to characterize the resulting active "blue solution" WOC, we were able to identify a diiridium(IV)-mono-μ-oxo core but were stymied by the extensive geometrical isomerism and coordinative variability. By moving to a family of monomeric complexes [IrIII/IV(pyalk)3] and [IrIII/IV(pyalk)2Cl2], we were able to better understand the original WOC and identify the special properties of the ligand. In this Account, we cover some results using the pyalk ligand and indicate the main features that make it particularly suitable as a ligand for oxidation catalysis. The alkoxide group of pyalk allows for proton-coupled electron transfer (PCET) and its strong σ- and π-donor power strongly favors attainment of exceptionally high oxidation states. The aromatic pyridine ring with its methyl-protected benzylic position provides strong binding and degradation resistance during catalytic turnover. Furthermore, the ligand has two additional benefits: broad solubility in aqueous and nonaqueous solvents and an anisotropic ligand field that enhances the geometry-dependent redox properties of its complexes. After discussion of the general properties, we highlight the specific complexes studied in more detail. In the iridium work, the isolated mononuclear complexes showed easily accessible Ir(III/IV) redox couples, in some cases with the Ir(IV) state being indefinitely stable in water. We were able to rationalize the unusual geometry-dependent redox properties of the various isomers on the basis of ligand-field effects. Even more striking was the isolation and full characterization of a stable Rh(IV) state, for which prior examples were very reactive and poorly characterized. Importantly, we were able to convert monomeric Ir complexes to [Cl(pyalk)2IrIV-O-IrIVCl(pyalk)2] derivatives that help model the "blue solution" properties and provide groundwork for rational synthesis of active, well-defined WOCs. More recent work has moved toward the study of first-row transition metal complexes. Manganese-based studies have highlighted the importance of the chelate effect for labile metals, leading to the synthesis of pincer-type pyalk derivatives. Beyond water oxidation, we believe the pyalk ligand and its derivatives will also prove useful in other oxidative transformations.
AB - Conspectus Water-oxidation catalysis is a critical bottleneck in the direct generation of solar fuels by artificial photosynthesis. Catalytic oxidation of difficult substrates such as water requires harsh conditions, so the ligand must be designed both to stabilize high oxidation states of the metal center and to strenuously resist ligand degradation. Typical ligand choices either lack sufficient electron donor power or fail to stand up to the oxidizing conditions. Our research on Ir-based water-oxidation catalysts (WOCs) has led us to identify a ligand, 2-(2′-pyridyl)-2-propanoate or "pyalk", that fulfills these requirements. Work with a family of Cp*Ir(chelate)Cl complexes had indicated that the pyalk-containing precursor gave the most robust WOC, which was still molecular in nature but lost the Cp* fragment by oxidative degradation. In trying to characterize the resulting active "blue solution" WOC, we were able to identify a diiridium(IV)-mono-μ-oxo core but were stymied by the extensive geometrical isomerism and coordinative variability. By moving to a family of monomeric complexes [IrIII/IV(pyalk)3] and [IrIII/IV(pyalk)2Cl2], we were able to better understand the original WOC and identify the special properties of the ligand. In this Account, we cover some results using the pyalk ligand and indicate the main features that make it particularly suitable as a ligand for oxidation catalysis. The alkoxide group of pyalk allows for proton-coupled electron transfer (PCET) and its strong σ- and π-donor power strongly favors attainment of exceptionally high oxidation states. The aromatic pyridine ring with its methyl-protected benzylic position provides strong binding and degradation resistance during catalytic turnover. Furthermore, the ligand has two additional benefits: broad solubility in aqueous and nonaqueous solvents and an anisotropic ligand field that enhances the geometry-dependent redox properties of its complexes. After discussion of the general properties, we highlight the specific complexes studied in more detail. In the iridium work, the isolated mononuclear complexes showed easily accessible Ir(III/IV) redox couples, in some cases with the Ir(IV) state being indefinitely stable in water. We were able to rationalize the unusual geometry-dependent redox properties of the various isomers on the basis of ligand-field effects. Even more striking was the isolation and full characterization of a stable Rh(IV) state, for which prior examples were very reactive and poorly characterized. Importantly, we were able to convert monomeric Ir complexes to [Cl(pyalk)2IrIV-O-IrIVCl(pyalk)2] derivatives that help model the "blue solution" properties and provide groundwork for rational synthesis of active, well-defined WOCs. More recent work has moved toward the study of first-row transition metal complexes. Manganese-based studies have highlighted the importance of the chelate effect for labile metals, leading to the synthesis of pincer-type pyalk derivatives. Beyond water oxidation, we believe the pyalk ligand and its derivatives will also prove useful in other oxidative transformations.
UR - http://www.scopus.com/inward/record.url?scp=85018528848&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85018528848&partnerID=8YFLogxK
U2 - 10.1021/acs.accounts.6b00652
DO - 10.1021/acs.accounts.6b00652
M3 - Article
C2 - 28272869
AN - SCOPUS:85018528848
VL - 50
SP - 952
EP - 959
JO - Accounts of Chemical Research
JF - Accounts of Chemical Research
SN - 0001-4842
IS - 4
ER -