A quasiclassical trajectory study of vibrational predissociation and collisional relaxation in Ar-OCS

Lester L. Gibson, George C Schatz

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

This paper describes the results of two closely related trajectory studies of the ArOCS system simulating (a) deactivation of OCS(0110) in thermal collisions with Ar, and (b) dissociation and energy transfer in the ArOCS van der Waals complex. Both studies used a potential surface which sums together an accurate OCS potential with an empirically determined Ar + OCS interaction potential. Two parametrizations of the surface are studied, and one of them (surface II) is found to match all the known properties of ArOCS complex as well as the results of ab initio calculations quite well. Collisional deactivation of OCS(0110) by Ar is studied using the quasiclassical trajectory method. A recently developed fast Fourier transform (FFT) method for determining the vibration/rotation good action variables in OCS is used to determine the deactivation transition probability in these collisions, and the resulting value on our better surface (0.5 × 10-4) is quite close to the measured value (0.96 × 0.3) × 10-4. Semiclassical eigenvalues for OCS are also calculated using the FFT method, and the results are within 0-8 cm-1 of accurate quantal values for states within 2500 cm-1 of the ground state. The ArOCS van der Waals cluster simulation is also done using quasiclassical trajectories, with OCS excited to either the 0200 or 0220 state and the Ar-OCS stretch and bend states varied over a wide range of energies from zero point to 90% of dissociation. In none of these simulations was either dissociation or intramolecular energy transfer important on a time scale of at least 15 ps and very likely 100 ps. This indicates that the 5.4 ps lifetime which appears to govern the absorption linewidth of ArOCS does not arise from either vibrational predissociation or intramolecular energy transfer.

Original languageEnglish
Pages (from-to)3433-3440
Number of pages8
JournalJournal of Chemical Physics
Volume83
Issue number7
Publication statusPublished - 1985

Fingerprint

Energy transfer
Trajectories
trajectories
deactivation
Fast Fourier transforms
energy transfer
dissociation
Linewidth
Ground state
collisions
transition probabilities
eigenvalues
simulation
life (durability)
vibration
ground state
interactions
energy
Hot Temperature

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

A quasiclassical trajectory study of vibrational predissociation and collisional relaxation in Ar-OCS. / Gibson, Lester L.; Schatz, George C.

In: Journal of Chemical Physics, Vol. 83, No. 7, 1985, p. 3433-3440.

Research output: Contribution to journalArticle

@article{bdb376e6581b48689dd8eb1a8be2b105,
title = "A quasiclassical trajectory study of vibrational predissociation and collisional relaxation in Ar-OCS",
abstract = "This paper describes the results of two closely related trajectory studies of the ArOCS system simulating (a) deactivation of OCS(0110) in thermal collisions with Ar, and (b) dissociation and energy transfer in the ArOCS van der Waals complex. Both studies used a potential surface which sums together an accurate OCS potential with an empirically determined Ar + OCS interaction potential. Two parametrizations of the surface are studied, and one of them (surface II) is found to match all the known properties of ArOCS complex as well as the results of ab initio calculations quite well. Collisional deactivation of OCS(0110) by Ar is studied using the quasiclassical trajectory method. A recently developed fast Fourier transform (FFT) method for determining the vibration/rotation good action variables in OCS is used to determine the deactivation transition probability in these collisions, and the resulting value on our better surface (0.5 × 10-4) is quite close to the measured value (0.96 × 0.3) × 10-4. Semiclassical eigenvalues for OCS are also calculated using the FFT method, and the results are within 0-8 cm-1 of accurate quantal values for states within 2500 cm-1 of the ground state. The ArOCS van der Waals cluster simulation is also done using quasiclassical trajectories, with OCS excited to either the 0200 or 0220 state and the Ar-OCS stretch and bend states varied over a wide range of energies from zero point to 90{\%} of dissociation. In none of these simulations was either dissociation or intramolecular energy transfer important on a time scale of at least 15 ps and very likely 100 ps. This indicates that the 5.4 ps lifetime which appears to govern the absorption linewidth of ArOCS does not arise from either vibrational predissociation or intramolecular energy transfer.",
author = "Gibson, {Lester L.} and Schatz, {George C}",
year = "1985",
language = "English",
volume = "83",
pages = "3433--3440",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "7",

}

TY - JOUR

T1 - A quasiclassical trajectory study of vibrational predissociation and collisional relaxation in Ar-OCS

AU - Gibson, Lester L.

AU - Schatz, George C

PY - 1985

Y1 - 1985

N2 - This paper describes the results of two closely related trajectory studies of the ArOCS system simulating (a) deactivation of OCS(0110) in thermal collisions with Ar, and (b) dissociation and energy transfer in the ArOCS van der Waals complex. Both studies used a potential surface which sums together an accurate OCS potential with an empirically determined Ar + OCS interaction potential. Two parametrizations of the surface are studied, and one of them (surface II) is found to match all the known properties of ArOCS complex as well as the results of ab initio calculations quite well. Collisional deactivation of OCS(0110) by Ar is studied using the quasiclassical trajectory method. A recently developed fast Fourier transform (FFT) method for determining the vibration/rotation good action variables in OCS is used to determine the deactivation transition probability in these collisions, and the resulting value on our better surface (0.5 × 10-4) is quite close to the measured value (0.96 × 0.3) × 10-4. Semiclassical eigenvalues for OCS are also calculated using the FFT method, and the results are within 0-8 cm-1 of accurate quantal values for states within 2500 cm-1 of the ground state. The ArOCS van der Waals cluster simulation is also done using quasiclassical trajectories, with OCS excited to either the 0200 or 0220 state and the Ar-OCS stretch and bend states varied over a wide range of energies from zero point to 90% of dissociation. In none of these simulations was either dissociation or intramolecular energy transfer important on a time scale of at least 15 ps and very likely 100 ps. This indicates that the 5.4 ps lifetime which appears to govern the absorption linewidth of ArOCS does not arise from either vibrational predissociation or intramolecular energy transfer.

AB - This paper describes the results of two closely related trajectory studies of the ArOCS system simulating (a) deactivation of OCS(0110) in thermal collisions with Ar, and (b) dissociation and energy transfer in the ArOCS van der Waals complex. Both studies used a potential surface which sums together an accurate OCS potential with an empirically determined Ar + OCS interaction potential. Two parametrizations of the surface are studied, and one of them (surface II) is found to match all the known properties of ArOCS complex as well as the results of ab initio calculations quite well. Collisional deactivation of OCS(0110) by Ar is studied using the quasiclassical trajectory method. A recently developed fast Fourier transform (FFT) method for determining the vibration/rotation good action variables in OCS is used to determine the deactivation transition probability in these collisions, and the resulting value on our better surface (0.5 × 10-4) is quite close to the measured value (0.96 × 0.3) × 10-4. Semiclassical eigenvalues for OCS are also calculated using the FFT method, and the results are within 0-8 cm-1 of accurate quantal values for states within 2500 cm-1 of the ground state. The ArOCS van der Waals cluster simulation is also done using quasiclassical trajectories, with OCS excited to either the 0200 or 0220 state and the Ar-OCS stretch and bend states varied over a wide range of energies from zero point to 90% of dissociation. In none of these simulations was either dissociation or intramolecular energy transfer important on a time scale of at least 15 ps and very likely 100 ps. This indicates that the 5.4 ps lifetime which appears to govern the absorption linewidth of ArOCS does not arise from either vibrational predissociation or intramolecular energy transfer.

UR - http://www.scopus.com/inward/record.url?scp=0005679310&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0005679310&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0005679310

VL - 83

SP - 3433

EP - 3440

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 7

ER -