Ab initio molecular orbital study of substituent effects in Vaska type complexes (trans-IrL2(CO)X)

Electron affinities, ionization potentials, carbonyl stretch frequencies, and the thermodynamics of H2 dissociative addition

Faraj Abu-Hasanayn, Alan S Goldman, Karsten Krogh-Jespersen

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

Ab initio electronic structure calculations are used to study substituent effects in Vaska-type complexes, trans-IrL2(CO)X (1-X) (X = F, Cl, Br, I, CN, H, CH3, SiH3, OH, and SH; L = PH3). Both the electron affinity and the ionization potential of 1-X are computed to increase upon descending the halogen series of complexes, which indicates, surprisingly, that the complexes with more electronegative halogens are more difficult to reduce and easier to oxidize. The computed electron affinity trend is consistent with the half-wave reduction potential trend known for 1-X (L = PPh3; X = F, Cl, Br, and I). Computed carbonyl stretch frequencies for 1-X are greater than experimental values (L = PPh3), but observed trends are well reproduced. The redox and spectroscopic trends are discussed in terms of the substituent effects on the electronic structure of 1-X, particularly as revealed in the molecular orbital energy level diagrams of these complexes. The reaction energy for H2 addition to 1-X, leading to the cis,trans-(H)2IrL2(CO)X (2-X) product, has been computed. After electron correlation effects are included (MP4(SDTQ)), the reaction enthalpy computed for 1-Cl is -18.4 kcal/mol (L = PH3) as compared to a reported experimental value of -14 kcal/mol (L = PPh3). Compared with available experimental data, the electronic effects of L (L = PH3, NH3, or AsH3) and X on the thermodynamics of the H2 addition reaction are accurately reproduced by the model calculations at all levels of theory (HF and MPn). Formation of the hypothetical products cis,trans- and trans,trans-(H)2IrL2(CO)X (2-X and 3-X) (X = BH2, NH2, and PH2) is used to demonstrate that π-acceptor substituents promote the H2 addition reaction to 1-X while π-donor substituents disfavor addition.

Original languageEnglish
Pages (from-to)5122-5130
Number of pages9
JournalInorganic Chemistry
Volume33
Issue number22
Publication statusPublished - 1994

Fingerprint

Electron affinity
Ionization potential
Molecular orbitals
Carbon Monoxide
electron affinity
ionization potentials
molecular orbitals
Addition reactions
Halogens
Thermodynamics
trends
thermodynamics
Electronic structure
halogens
Electron correlations
electronic structure
Electron energy levels
Enthalpy
products
enthalpy

ASJC Scopus subject areas

  • Inorganic Chemistry

Cite this

@article{b16cfa387d534c408f885d32fe2931d3,
title = "Ab initio molecular orbital study of substituent effects in Vaska type complexes (trans-IrL2(CO)X): Electron affinities, ionization potentials, carbonyl stretch frequencies, and the thermodynamics of H2 dissociative addition",
abstract = "Ab initio electronic structure calculations are used to study substituent effects in Vaska-type complexes, trans-IrL2(CO)X (1-X) (X = F, Cl, Br, I, CN, H, CH3, SiH3, OH, and SH; L = PH3). Both the electron affinity and the ionization potential of 1-X are computed to increase upon descending the halogen series of complexes, which indicates, surprisingly, that the complexes with more electronegative halogens are more difficult to reduce and easier to oxidize. The computed electron affinity trend is consistent with the half-wave reduction potential trend known for 1-X (L = PPh3; X = F, Cl, Br, and I). Computed carbonyl stretch frequencies for 1-X are greater than experimental values (L = PPh3), but observed trends are well reproduced. The redox and spectroscopic trends are discussed in terms of the substituent effects on the electronic structure of 1-X, particularly as revealed in the molecular orbital energy level diagrams of these complexes. The reaction energy for H2 addition to 1-X, leading to the cis,trans-(H)2IrL2(CO)X (2-X) product, has been computed. After electron correlation effects are included (MP4(SDTQ)), the reaction enthalpy computed for 1-Cl is -18.4 kcal/mol (L = PH3) as compared to a reported experimental value of -14 kcal/mol (L = PPh3). Compared with available experimental data, the electronic effects of L (L = PH3, NH3, or AsH3) and X on the thermodynamics of the H2 addition reaction are accurately reproduced by the model calculations at all levels of theory (HF and MPn). Formation of the hypothetical products cis,trans- and trans,trans-(H)2IrL2(CO)X (2-X and 3-X) (X = BH2, NH2, and PH2) is used to demonstrate that π-acceptor substituents promote the H2 addition reaction to 1-X while π-donor substituents disfavor addition.",
author = "Faraj Abu-Hasanayn and Goldman, {Alan S} and Karsten Krogh-Jespersen",
year = "1994",
language = "English",
volume = "33",
pages = "5122--5130",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "22",

}

TY - JOUR

T1 - Ab initio molecular orbital study of substituent effects in Vaska type complexes (trans-IrL2(CO)X)

T2 - Electron affinities, ionization potentials, carbonyl stretch frequencies, and the thermodynamics of H2 dissociative addition

AU - Abu-Hasanayn, Faraj

AU - Goldman, Alan S

AU - Krogh-Jespersen, Karsten

PY - 1994

Y1 - 1994

N2 - Ab initio electronic structure calculations are used to study substituent effects in Vaska-type complexes, trans-IrL2(CO)X (1-X) (X = F, Cl, Br, I, CN, H, CH3, SiH3, OH, and SH; L = PH3). Both the electron affinity and the ionization potential of 1-X are computed to increase upon descending the halogen series of complexes, which indicates, surprisingly, that the complexes with more electronegative halogens are more difficult to reduce and easier to oxidize. The computed electron affinity trend is consistent with the half-wave reduction potential trend known for 1-X (L = PPh3; X = F, Cl, Br, and I). Computed carbonyl stretch frequencies for 1-X are greater than experimental values (L = PPh3), but observed trends are well reproduced. The redox and spectroscopic trends are discussed in terms of the substituent effects on the electronic structure of 1-X, particularly as revealed in the molecular orbital energy level diagrams of these complexes. The reaction energy for H2 addition to 1-X, leading to the cis,trans-(H)2IrL2(CO)X (2-X) product, has been computed. After electron correlation effects are included (MP4(SDTQ)), the reaction enthalpy computed for 1-Cl is -18.4 kcal/mol (L = PH3) as compared to a reported experimental value of -14 kcal/mol (L = PPh3). Compared with available experimental data, the electronic effects of L (L = PH3, NH3, or AsH3) and X on the thermodynamics of the H2 addition reaction are accurately reproduced by the model calculations at all levels of theory (HF and MPn). Formation of the hypothetical products cis,trans- and trans,trans-(H)2IrL2(CO)X (2-X and 3-X) (X = BH2, NH2, and PH2) is used to demonstrate that π-acceptor substituents promote the H2 addition reaction to 1-X while π-donor substituents disfavor addition.

AB - Ab initio electronic structure calculations are used to study substituent effects in Vaska-type complexes, trans-IrL2(CO)X (1-X) (X = F, Cl, Br, I, CN, H, CH3, SiH3, OH, and SH; L = PH3). Both the electron affinity and the ionization potential of 1-X are computed to increase upon descending the halogen series of complexes, which indicates, surprisingly, that the complexes with more electronegative halogens are more difficult to reduce and easier to oxidize. The computed electron affinity trend is consistent with the half-wave reduction potential trend known for 1-X (L = PPh3; X = F, Cl, Br, and I). Computed carbonyl stretch frequencies for 1-X are greater than experimental values (L = PPh3), but observed trends are well reproduced. The redox and spectroscopic trends are discussed in terms of the substituent effects on the electronic structure of 1-X, particularly as revealed in the molecular orbital energy level diagrams of these complexes. The reaction energy for H2 addition to 1-X, leading to the cis,trans-(H)2IrL2(CO)X (2-X) product, has been computed. After electron correlation effects are included (MP4(SDTQ)), the reaction enthalpy computed for 1-Cl is -18.4 kcal/mol (L = PH3) as compared to a reported experimental value of -14 kcal/mol (L = PPh3). Compared with available experimental data, the electronic effects of L (L = PH3, NH3, or AsH3) and X on the thermodynamics of the H2 addition reaction are accurately reproduced by the model calculations at all levels of theory (HF and MPn). Formation of the hypothetical products cis,trans- and trans,trans-(H)2IrL2(CO)X (2-X and 3-X) (X = BH2, NH2, and PH2) is used to demonstrate that π-acceptor substituents promote the H2 addition reaction to 1-X while π-donor substituents disfavor addition.

UR - http://www.scopus.com/inward/record.url?scp=0000155784&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000155784&partnerID=8YFLogxK

M3 - Article

VL - 33

SP - 5122

EP - 5130

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 22

ER -