Addition of Aldehydes and Acyl Chlorides to [Rh(PiPr3)2Cl]2. Thermodynamics and Molecular and Crystal Structures of Rh(Pi Pr3)2 CIX[C(O)PH] (X = H, Cl)

Kun Wang, Thomas J. Emge, Alan S. Goldman, Chunbang Li, Steven P. Nolan

Research output: Contribution to journalArticlepeer-review

46 Citations (Scopus)


Addition of aldehyde (RCHO; R = n-octyl, Ph, p-Tol, p-MeOC6H4, P-CF3C6H4) to [Rh(PiPr3)2Cl]2 (1) results in rapid addition of the aldehyde C—H bond to yield Rh(PiPr3)2-CIH[C(O)R] (2-R). 2-Ph was isolated, and a single-crystal X-ray diffraction study reveals a trigonal-bipyramidal structure with a small H—Rh—C(acyl) angle of 85(4)°. Enthalpies of addition to 1 were measured by solution calorimetry (R, ΔH/(kcal/mol)): octyl, -15.2 ± 0.3; Ph, -10.8 ± 0.4; p-Tol, -10.6 ± 0.4; p-CF3C6H4, -12.7 ± 0.4; p-MeOC6H4, -10.5 ± 0.3. Electron-withdrawing para substituents on the aromatic aldehydes favor addition. Addition of nonanal is more favorable than addition of benzaldehydes, probably due to steric effects, particularly the close hydride-phenyl contact found in 2-Ph. 1 reacts with acyl chlorides (RC(O)Cl, R = octyl, Ph) rapidly to give Rh(PiPr3)2Cl2[C(O)R] (3-R). 3-Ph possesses a squarepyramidal structure. The enthalpies of addition were also measured calorimetrically (R, ΔH/(kcal/mol)): octyl, -24.6 ± 0.3; Ph, -21.7 ± 0.3. Relative to the addition of acyl chlorides, the exothermicity of aldehyde addition is greater than would be expected on the basis of thermodynamic data for related late-transition-metal complexes.

Original languageEnglish
Pages (from-to)4929-4936
Number of pages8
Issue number10
Publication statusPublished - Oct 1995

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Addition of Aldehydes and Acyl Chlorides to [Rh(P<sup>i</sup>Pr<sub>3</sub>)<sub>2</sub>Cl]<sub>2</sub>. Thermodynamics and Molecular and Crystal Structures of Rh(P<sup>i</sup> Pr<sub>3</sub>)<sub>2</sub> CIX[C(O)PH] (X = H, Cl)'. Together they form a unique fingerprint.

Cite this