Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry

Michael C. Haibach, Sabuj Kundu, Maurice Brookhart, Alan S Goldman

Research output: Contribution to journalArticle

179 Citations (Scopus)

Abstract

Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of synthesis gas including biomass and nonconventional fossil carbon sources. The major desired products of Fischer-Tropsch catalysis are n-alkanes that contain 9-19 carbons; they comprise a clean-burning and high combustion quality diesel, jet, and marine fuel. However, Fischer-Tropsch catalysis also results in significant yields of the much less valuable C 3 to C 8 n-alkanes; these are also present in large quantities in oil and gas reserves (natural gas liquids) and can be produced from the direct reduction of carbohydrates. Therefore, methods that could disproportionate medium-weight (C 3-C 8) n-alkanes into heavy and light n-alkanes offer great potential value as global demand for fuel increases and petroleum reserves decrease. This Account describes systems that we have developed for alkane metathesis based on the tandem operation of catalysts for alkane dehydrogenation and olefin metathesis. As dehydrogenation catalysts, we used pincer-ligated iridium complexes, and we initially investigated Schrock-type Mo or W alkylidene complexes as olefin metathesis catalysts. The interoperability of the catalysts typically represents a major challenge in tandem catalysis. In our systems, the rate of alkane dehydrogenation generally limits the overall reaction rate, whereas the lifetime of the alkylidene complexes at the relatively high temperatures required to obtain practical dehydrogenation rates (ca. 125-200 °C) limits the total turnover numbers. Accordingly, we have focused on the development and use of more active dehydrogenation catalysts and more stable olefinmetathesis catalysts. We have used thermally stable solid metal oxides as the olefin-metathesis catalysts. Both the pincer complexes and the alkylidene complexes have been supported on alumina via adsorption through basic para-substituents. This process does not significantly affect catalyst activity, and in some cases it increases both the catalyst lifetime and the compatibility of the co-catalysts. These molecular catalysts are the first systems that effect alkane metathesis with molecular-weight selectivity, particularly for the conversion of C n n-alkanes to C 2n-2n-alkanes plus ethane. This molecular-weight selectivity offers a critical advantage over the few previously reported alkane metathesis systems. We have studied the factors that determine molecular-weight selectivity in depth, including the isomerization of the olefinic intermediates and the regioselectivity of the pincer-iridium catalyst for dehydrogenation at the terminal position of the n-alkane. Our continuing work centers on the development of co-catalysts with improved interoperability, particularly olefin-metathesis catalysts that are more robust at high temperature and dehydrogenation catalysts that are more active at low temperature. We are also designing dehydrogenation catalysts based on metals other than iridium. Our ongoing mechanistic studies are focused on the apparently complex combination of factors that determine molecular-weight selectivity.

Original languageEnglish
Pages (from-to)947-958
Number of pages12
JournalAccounts of Chemical Research
Volume45
Issue number6
DOIs
Publication statusPublished - Jun 19 2012

Fingerprint

Alkanes
Alkenes
Dehydrogenation
Catalysis
Catalysts
Iridium
Molecular weight
Carbon
Interoperability
Natural gas
Metals
Regioselectivity
Ethane
Aluminum Oxide
Coal
Synthesis gas
Petroleum
Liquids
Isomerization
Temperature

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry. / Haibach, Michael C.; Kundu, Sabuj; Brookhart, Maurice; Goldman, Alan S.

In: Accounts of Chemical Research, Vol. 45, No. 6, 19.06.2012, p. 947-958.

Research output: Contribution to journalArticle

Haibach, Michael C. ; Kundu, Sabuj ; Brookhart, Maurice ; Goldman, Alan S. / Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry. In: Accounts of Chemical Research. 2012 ; Vol. 45, No. 6. pp. 947-958.
@article{556b4cc26dff4517b03409961fbb0e95,
title = "Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry",
abstract = "Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of synthesis gas including biomass and nonconventional fossil carbon sources. The major desired products of Fischer-Tropsch catalysis are n-alkanes that contain 9-19 carbons; they comprise a clean-burning and high combustion quality diesel, jet, and marine fuel. However, Fischer-Tropsch catalysis also results in significant yields of the much less valuable C 3 to C 8 n-alkanes; these are also present in large quantities in oil and gas reserves (natural gas liquids) and can be produced from the direct reduction of carbohydrates. Therefore, methods that could disproportionate medium-weight (C 3-C 8) n-alkanes into heavy and light n-alkanes offer great potential value as global demand for fuel increases and petroleum reserves decrease. This Account describes systems that we have developed for alkane metathesis based on the tandem operation of catalysts for alkane dehydrogenation and olefin metathesis. As dehydrogenation catalysts, we used pincer-ligated iridium complexes, and we initially investigated Schrock-type Mo or W alkylidene complexes as olefin metathesis catalysts. The interoperability of the catalysts typically represents a major challenge in tandem catalysis. In our systems, the rate of alkane dehydrogenation generally limits the overall reaction rate, whereas the lifetime of the alkylidene complexes at the relatively high temperatures required to obtain practical dehydrogenation rates (ca. 125-200 °C) limits the total turnover numbers. Accordingly, we have focused on the development and use of more active dehydrogenation catalysts and more stable olefinmetathesis catalysts. We have used thermally stable solid metal oxides as the olefin-metathesis catalysts. Both the pincer complexes and the alkylidene complexes have been supported on alumina via adsorption through basic para-substituents. This process does not significantly affect catalyst activity, and in some cases it increases both the catalyst lifetime and the compatibility of the co-catalysts. These molecular catalysts are the first systems that effect alkane metathesis with molecular-weight selectivity, particularly for the conversion of C n n-alkanes to C 2n-2n-alkanes plus ethane. This molecular-weight selectivity offers a critical advantage over the few previously reported alkane metathesis systems. We have studied the factors that determine molecular-weight selectivity in depth, including the isomerization of the olefinic intermediates and the regioselectivity of the pincer-iridium catalyst for dehydrogenation at the terminal position of the n-alkane. Our continuing work centers on the development of co-catalysts with improved interoperability, particularly olefin-metathesis catalysts that are more robust at high temperature and dehydrogenation catalysts that are more active at low temperature. We are also designing dehydrogenation catalysts based on metals other than iridium. Our ongoing mechanistic studies are focused on the apparently complex combination of factors that determine molecular-weight selectivity.",
author = "Haibach, {Michael C.} and Sabuj Kundu and Maurice Brookhart and Goldman, {Alan S}",
year = "2012",
month = "6",
day = "19",
doi = "10.1021/ar3000713",
language = "English",
volume = "45",
pages = "947--958",
journal = "Accounts of Chemical Research",
issn = "0001-4842",
publisher = "American Chemical Society",
number = "6",

}

TY - JOUR

T1 - Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry

AU - Haibach, Michael C.

AU - Kundu, Sabuj

AU - Brookhart, Maurice

AU - Goldman, Alan S

PY - 2012/6/19

Y1 - 2012/6/19

N2 - Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of synthesis gas including biomass and nonconventional fossil carbon sources. The major desired products of Fischer-Tropsch catalysis are n-alkanes that contain 9-19 carbons; they comprise a clean-burning and high combustion quality diesel, jet, and marine fuel. However, Fischer-Tropsch catalysis also results in significant yields of the much less valuable C 3 to C 8 n-alkanes; these are also present in large quantities in oil and gas reserves (natural gas liquids) and can be produced from the direct reduction of carbohydrates. Therefore, methods that could disproportionate medium-weight (C 3-C 8) n-alkanes into heavy and light n-alkanes offer great potential value as global demand for fuel increases and petroleum reserves decrease. This Account describes systems that we have developed for alkane metathesis based on the tandem operation of catalysts for alkane dehydrogenation and olefin metathesis. As dehydrogenation catalysts, we used pincer-ligated iridium complexes, and we initially investigated Schrock-type Mo or W alkylidene complexes as olefin metathesis catalysts. The interoperability of the catalysts typically represents a major challenge in tandem catalysis. In our systems, the rate of alkane dehydrogenation generally limits the overall reaction rate, whereas the lifetime of the alkylidene complexes at the relatively high temperatures required to obtain practical dehydrogenation rates (ca. 125-200 °C) limits the total turnover numbers. Accordingly, we have focused on the development and use of more active dehydrogenation catalysts and more stable olefinmetathesis catalysts. We have used thermally stable solid metal oxides as the olefin-metathesis catalysts. Both the pincer complexes and the alkylidene complexes have been supported on alumina via adsorption through basic para-substituents. This process does not significantly affect catalyst activity, and in some cases it increases both the catalyst lifetime and the compatibility of the co-catalysts. These molecular catalysts are the first systems that effect alkane metathesis with molecular-weight selectivity, particularly for the conversion of C n n-alkanes to C 2n-2n-alkanes plus ethane. This molecular-weight selectivity offers a critical advantage over the few previously reported alkane metathesis systems. We have studied the factors that determine molecular-weight selectivity in depth, including the isomerization of the olefinic intermediates and the regioselectivity of the pincer-iridium catalyst for dehydrogenation at the terminal position of the n-alkane. Our continuing work centers on the development of co-catalysts with improved interoperability, particularly olefin-metathesis catalysts that are more robust at high temperature and dehydrogenation catalysts that are more active at low temperature. We are also designing dehydrogenation catalysts based on metals other than iridium. Our ongoing mechanistic studies are focused on the apparently complex combination of factors that determine molecular-weight selectivity.

AB - Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of synthesis gas including biomass and nonconventional fossil carbon sources. The major desired products of Fischer-Tropsch catalysis are n-alkanes that contain 9-19 carbons; they comprise a clean-burning and high combustion quality diesel, jet, and marine fuel. However, Fischer-Tropsch catalysis also results in significant yields of the much less valuable C 3 to C 8 n-alkanes; these are also present in large quantities in oil and gas reserves (natural gas liquids) and can be produced from the direct reduction of carbohydrates. Therefore, methods that could disproportionate medium-weight (C 3-C 8) n-alkanes into heavy and light n-alkanes offer great potential value as global demand for fuel increases and petroleum reserves decrease. This Account describes systems that we have developed for alkane metathesis based on the tandem operation of catalysts for alkane dehydrogenation and olefin metathesis. As dehydrogenation catalysts, we used pincer-ligated iridium complexes, and we initially investigated Schrock-type Mo or W alkylidene complexes as olefin metathesis catalysts. The interoperability of the catalysts typically represents a major challenge in tandem catalysis. In our systems, the rate of alkane dehydrogenation generally limits the overall reaction rate, whereas the lifetime of the alkylidene complexes at the relatively high temperatures required to obtain practical dehydrogenation rates (ca. 125-200 °C) limits the total turnover numbers. Accordingly, we have focused on the development and use of more active dehydrogenation catalysts and more stable olefinmetathesis catalysts. We have used thermally stable solid metal oxides as the olefin-metathesis catalysts. Both the pincer complexes and the alkylidene complexes have been supported on alumina via adsorption through basic para-substituents. This process does not significantly affect catalyst activity, and in some cases it increases both the catalyst lifetime and the compatibility of the co-catalysts. These molecular catalysts are the first systems that effect alkane metathesis with molecular-weight selectivity, particularly for the conversion of C n n-alkanes to C 2n-2n-alkanes plus ethane. This molecular-weight selectivity offers a critical advantage over the few previously reported alkane metathesis systems. We have studied the factors that determine molecular-weight selectivity in depth, including the isomerization of the olefinic intermediates and the regioselectivity of the pincer-iridium catalyst for dehydrogenation at the terminal position of the n-alkane. Our continuing work centers on the development of co-catalysts with improved interoperability, particularly olefin-metathesis catalysts that are more robust at high temperature and dehydrogenation catalysts that are more active at low temperature. We are also designing dehydrogenation catalysts based on metals other than iridium. Our ongoing mechanistic studies are focused on the apparently complex combination of factors that determine molecular-weight selectivity.

UR - http://www.scopus.com/inward/record.url?scp=84863430547&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84863430547&partnerID=8YFLogxK

U2 - 10.1021/ar3000713

DO - 10.1021/ar3000713

M3 - Article

C2 - 22584036

AN - SCOPUS:84863430547

VL - 45

SP - 947

EP - 958

JO - Accounts of Chemical Research

JF - Accounts of Chemical Research

SN - 0001-4842

IS - 6

ER -