Alkenylsilane structure effects on mononuclear and binuclear organotitanium-mediated ethylene polymerization: Scope and mechanism of simultaneous polyolefin branch and functional group introduction

Smruti B. Amin, Tobin J. Marks

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

Alkenylsilanes of varying chain lengths are investigated as simultaneous chain-transfer agents and comonomers in organotitanium-mediated olefin polymerization processes. Ethylene polymerizations were carried out with activated CGCTiMe2 and EBICGCTi2Me4 (CGC = Me2Si(Me4C5)(NtBu); EBICGC = (μ-CH2CH2-3,3′){(η5-indenyl)[1- Me2Si(tBuN)]}2) precatalysts in the presence of allylsilane, 3-butenylsilane, 5-hexenylsilane, and 7-octenylsilane. In the presence of these alkenylsilanes, high polymerization activities (up to 10 7 g of polymer/(mol of Ti-atm ethylene·h)), narrow product copolymer polydispersities, and substantial amounts of long-chain branching are observed. Regardless of Ti nuclearity, alkenylsilane incorporation levels follow the trend C8H15SiH3 <C6H 11SiH3 ≈ C4H7SiH3 <C3H5SiH3. Alkenylsilane comonomer incorporation levels are consistently higher for CGCTiMe2-mediated copolymerizations (up to 54%) in comparison with EBICGCTi2Me 4-mediated copolymerizations (up to 32%). The long-chain branching levels as compared to the total branch content follow the trend C 3H5SiH3 <C4H7SiH 3 ≈ C6H11SiH3 ≈ C 8H15SiH3, with gel permeation chromatography-multi-angle laser light scattering-derived branching ratios (gM) approaching 1.0 for C8H15SiH3. Time-dependent experiments indicate a linear increase of copolymer Mw with increasing polymerization reaction time. This process for producing long-chain branched polyolefins by coupling of an α-olefin with a chain-transfer agent in one comonomer is unprecedented. Under the conditions investigated, alkenylsilanes ranging from C3 to C8 are all efficient chain-transfer agents. Ti nuclearity significantly influences silanolytic chain-transfer processes, with the binuclear system exhibiting a sublinear relationship between Mn and [alkenylsilane]-1 for allylsilane and 3-butenylsilane, and a superlinear relationship between Mn and [alkenylsilane]-1 for 5-hexenylsilane and 7-octenylsilane. For the mononuclear Ti system, alkenylsilanes up to C 6 exhibit a linear relationship between Mn and [alkenylsilane]-1, consistent with a simple silanolytic chain termination mechanism.

Original languageEnglish
Pages (from-to)2938-2953
Number of pages16
JournalJournal of the American Chemical Society
Volume129
Issue number10
DOIs
Publication statusPublished - Mar 14 2007

Fingerprint

Polyolefins
Polymerization
Functional groups
Ethylene
Alkenes
Copolymerization
Olefins
Copolymers
Gel permeation chromatography
Polydispersity
Chain length
Light scattering
Gel Chromatography
Polymers
Lasers
Light
PL 732
ethylene
Experiments
allylsilane

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

@article{63d1c3a61f20494cb204018b6d517032,
title = "Alkenylsilane structure effects on mononuclear and binuclear organotitanium-mediated ethylene polymerization: Scope and mechanism of simultaneous polyolefin branch and functional group introduction",
abstract = "Alkenylsilanes of varying chain lengths are investigated as simultaneous chain-transfer agents and comonomers in organotitanium-mediated olefin polymerization processes. Ethylene polymerizations were carried out with activated CGCTiMe2 and EBICGCTi2Me4 (CGC = Me2Si(Me4C5)(NtBu); EBICGC = (μ-CH2CH2-3,3′){(η5-indenyl)[1- Me2Si(tBuN)]}2) precatalysts in the presence of allylsilane, 3-butenylsilane, 5-hexenylsilane, and 7-octenylsilane. In the presence of these alkenylsilanes, high polymerization activities (up to 10 7 g of polymer/(mol of Ti-atm ethylene·h)), narrow product copolymer polydispersities, and substantial amounts of long-chain branching are observed. Regardless of Ti nuclearity, alkenylsilane incorporation levels follow the trend C8H15SiH3 <C6H 11SiH3 ≈ C4H7SiH3 <C3H5SiH3. Alkenylsilane comonomer incorporation levels are consistently higher for CGCTiMe2-mediated copolymerizations (up to 54{\%}) in comparison with EBICGCTi2Me 4-mediated copolymerizations (up to 32{\%}). The long-chain branching levels as compared to the total branch content follow the trend C 3H5SiH3 <C4H7SiH 3 ≈ C6H11SiH3 ≈ C 8H15SiH3, with gel permeation chromatography-multi-angle laser light scattering-derived branching ratios (gM) approaching 1.0 for C8H15SiH3. Time-dependent experiments indicate a linear increase of copolymer Mw with increasing polymerization reaction time. This process for producing long-chain branched polyolefins by coupling of an α-olefin with a chain-transfer agent in one comonomer is unprecedented. Under the conditions investigated, alkenylsilanes ranging from C3 to C8 are all efficient chain-transfer agents. Ti nuclearity significantly influences silanolytic chain-transfer processes, with the binuclear system exhibiting a sublinear relationship between Mn and [alkenylsilane]-1 for allylsilane and 3-butenylsilane, and a superlinear relationship between Mn and [alkenylsilane]-1 for 5-hexenylsilane and 7-octenylsilane. For the mononuclear Ti system, alkenylsilanes up to C 6 exhibit a linear relationship between Mn and [alkenylsilane]-1, consistent with a simple silanolytic chain termination mechanism.",
author = "Amin, {Smruti B.} and Marks, {Tobin J.}",
year = "2007",
month = "3",
day = "14",
doi = "10.1021/ja0675292",
language = "English",
volume = "129",
pages = "2938--2953",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "10",

}

TY - JOUR

T1 - Alkenylsilane structure effects on mononuclear and binuclear organotitanium-mediated ethylene polymerization

T2 - Scope and mechanism of simultaneous polyolefin branch and functional group introduction

AU - Amin, Smruti B.

AU - Marks, Tobin J.

PY - 2007/3/14

Y1 - 2007/3/14

N2 - Alkenylsilanes of varying chain lengths are investigated as simultaneous chain-transfer agents and comonomers in organotitanium-mediated olefin polymerization processes. Ethylene polymerizations were carried out with activated CGCTiMe2 and EBICGCTi2Me4 (CGC = Me2Si(Me4C5)(NtBu); EBICGC = (μ-CH2CH2-3,3′){(η5-indenyl)[1- Me2Si(tBuN)]}2) precatalysts in the presence of allylsilane, 3-butenylsilane, 5-hexenylsilane, and 7-octenylsilane. In the presence of these alkenylsilanes, high polymerization activities (up to 10 7 g of polymer/(mol of Ti-atm ethylene·h)), narrow product copolymer polydispersities, and substantial amounts of long-chain branching are observed. Regardless of Ti nuclearity, alkenylsilane incorporation levels follow the trend C8H15SiH3 <C6H 11SiH3 ≈ C4H7SiH3 <C3H5SiH3. Alkenylsilane comonomer incorporation levels are consistently higher for CGCTiMe2-mediated copolymerizations (up to 54%) in comparison with EBICGCTi2Me 4-mediated copolymerizations (up to 32%). The long-chain branching levels as compared to the total branch content follow the trend C 3H5SiH3 <C4H7SiH 3 ≈ C6H11SiH3 ≈ C 8H15SiH3, with gel permeation chromatography-multi-angle laser light scattering-derived branching ratios (gM) approaching 1.0 for C8H15SiH3. Time-dependent experiments indicate a linear increase of copolymer Mw with increasing polymerization reaction time. This process for producing long-chain branched polyolefins by coupling of an α-olefin with a chain-transfer agent in one comonomer is unprecedented. Under the conditions investigated, alkenylsilanes ranging from C3 to C8 are all efficient chain-transfer agents. Ti nuclearity significantly influences silanolytic chain-transfer processes, with the binuclear system exhibiting a sublinear relationship between Mn and [alkenylsilane]-1 for allylsilane and 3-butenylsilane, and a superlinear relationship between Mn and [alkenylsilane]-1 for 5-hexenylsilane and 7-octenylsilane. For the mononuclear Ti system, alkenylsilanes up to C 6 exhibit a linear relationship between Mn and [alkenylsilane]-1, consistent with a simple silanolytic chain termination mechanism.

AB - Alkenylsilanes of varying chain lengths are investigated as simultaneous chain-transfer agents and comonomers in organotitanium-mediated olefin polymerization processes. Ethylene polymerizations were carried out with activated CGCTiMe2 and EBICGCTi2Me4 (CGC = Me2Si(Me4C5)(NtBu); EBICGC = (μ-CH2CH2-3,3′){(η5-indenyl)[1- Me2Si(tBuN)]}2) precatalysts in the presence of allylsilane, 3-butenylsilane, 5-hexenylsilane, and 7-octenylsilane. In the presence of these alkenylsilanes, high polymerization activities (up to 10 7 g of polymer/(mol of Ti-atm ethylene·h)), narrow product copolymer polydispersities, and substantial amounts of long-chain branching are observed. Regardless of Ti nuclearity, alkenylsilane incorporation levels follow the trend C8H15SiH3 <C6H 11SiH3 ≈ C4H7SiH3 <C3H5SiH3. Alkenylsilane comonomer incorporation levels are consistently higher for CGCTiMe2-mediated copolymerizations (up to 54%) in comparison with EBICGCTi2Me 4-mediated copolymerizations (up to 32%). The long-chain branching levels as compared to the total branch content follow the trend C 3H5SiH3 <C4H7SiH 3 ≈ C6H11SiH3 ≈ C 8H15SiH3, with gel permeation chromatography-multi-angle laser light scattering-derived branching ratios (gM) approaching 1.0 for C8H15SiH3. Time-dependent experiments indicate a linear increase of copolymer Mw with increasing polymerization reaction time. This process for producing long-chain branched polyolefins by coupling of an α-olefin with a chain-transfer agent in one comonomer is unprecedented. Under the conditions investigated, alkenylsilanes ranging from C3 to C8 are all efficient chain-transfer agents. Ti nuclearity significantly influences silanolytic chain-transfer processes, with the binuclear system exhibiting a sublinear relationship between Mn and [alkenylsilane]-1 for allylsilane and 3-butenylsilane, and a superlinear relationship between Mn and [alkenylsilane]-1 for 5-hexenylsilane and 7-octenylsilane. For the mononuclear Ti system, alkenylsilanes up to C 6 exhibit a linear relationship between Mn and [alkenylsilane]-1, consistent with a simple silanolytic chain termination mechanism.

UR - http://www.scopus.com/inward/record.url?scp=33947257236&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33947257236&partnerID=8YFLogxK

U2 - 10.1021/ja0675292

DO - 10.1021/ja0675292

M3 - Article

C2 - 17309260

AN - SCOPUS:33947257236

VL - 129

SP - 2938

EP - 2953

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 10

ER -