All-electron local-density-functional theory of alkali-metal adsorption on transition-metal surfaces: Cs on Mo(001)

S. R. Chubb, E. Wimmer, Arthur J Freeman, J. R. Hiskes, A. M. Karo

Research output: Contribution to journalArticle

41 Citations (Scopus)


The electronic structure of a clean Mo(001) surface and the bonding between a dense [c(2×2)] Cs overlayer with the Mo(001) substrate are studied using all-electron local-density-functional theory and the full-potential linearized augmented-plane-wave (FLAPW) method for thin films. We find that Cs(s)-Mo(d) interactions lead to a shift of the high-lying surface state at » from 0.1 to 0.9 eV below the Fermi level and to a Cs(s)-Mo(d) band with an upward dispersion away from ». Furthermore, Cs(d)-Mo(d) interactions reduce the high Mo-surface-projected density of states at EF by shifting some of the Mo(d) bands [notably those midway between » and M of the Mo(001) surface Brillouin zone] to larger binding energies. In addition, Cs is found to induce unoccupied adsorbate-surface states of Cs p and d character, located 0.8 eV above the Fermi level. Similar to the case of tungsten metal, the lowering of the work function of Mo(001) due to Cs adsorption is explained by the formation of multiple surface dipoles involving a polarization of the Cs 6sderived states towards the transition metal and a counterpolarization of the Cs 5p states.

Original languageEnglish
Pages (from-to)4112-4122
Number of pages11
JournalPhysical Review B
Issue number8
Publication statusPublished - 1987


ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this