All-Scale Hierarchically Structured p-Type PbSe Alloys with High Thermoelectric Performance Enabled by Improved Band Degeneracy

Gangjian Tan, Shiqiang Hao, Songting Cai, Trevor P. Bailey, Zhongzhen Luo, Ido Hadar, Ctirad Uher, Vinayak P. Dravid, Christopher Wolverton, Mercouri G. Kanatzidis

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

We show an example of hierarchically designing electronic bands of PbSe toward excellent thermoelectric performance. We find that alloying 15 mol % PbTe into PbSe causes a negligible change in the light and heavy valence band energy offsets (ΔEV) of PbSe around room temperature; however, with rising temperature it makes ΔEV decrease at a significantly higher rate than in PbSe. In other words, the temperature-induced valence band convergence of PbSe is accelerated by alloying with PbTe. On this basis, applying 3 mol % Cd substitution on the Pb sites of PbSe0.85Te0.15 decreases ΔEV and enhances the Seebeck coefficient at all temperatures. Excess Cd precipitates out as CdSe1-yTey, whose valence band aligns with that of the p-type Na-doped PbSe0.85Te0.15 matrix. This enables facile charge transport across the matrix/precipitate interfaces and retains the high carrier mobilities. Meanwhile, compared to PbSe the lattice thermal conductivity of PbSe0.85Te0.15 is significantly decreased to its amorphous limit of 0.5 W m-1 K-1. Consequently, a highest peak ZT of 1.7 at 900 K and a record high average ZT of ∼1 (400-900 K) for a PbSe-based system are achieved in the composition Pb0.95Na0.02Cd0.03Se0.85Te0.15, which are ∼70% and ∼50% higher than those of Pb0.98Na0.02Se control sample, respectively.

Original languageEnglish
Pages (from-to)4480-4486
Number of pages7
JournalJournal of the American Chemical Society
Volume141
Issue number10
DOIs
Publication statusPublished - Mar 13 2019

    Fingerprint

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this