Amorphous TiO2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics

In Soo Kim, Richard T. Haasch, Duyen H. Cao, Omar K. Farha, Joseph T Hupp, Mercouri G Kanatzidis, Alex B F Martinson

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

A low-temperature (<120 °C) route to pinhole-free amorphous TiO2 compact layers may pave the way to more efficient, flexible, and stable inverted perovskite halide device designs. Toward this end, we utilize low-temperature thermal atomic layer deposition (ALD) to synthesize ultrathin (12 nm) compact TiO2 underlayers for planar halide perovskite PV. Although device performance with as-deposited TiO2 films is poor, we identify room-temperature UV-O3 treatment as a route to device efficiency comparable to crystalline TiO2 thin films synthesized by higher temperature methods. We further explore the chemical, physical, and interfacial properties that might explain the improved performance through X-ray diffraction, spectroscopic ellipsometry, Raman spectroscopy, and X-ray photoelectron spectroscopy. These findings challenge our intuition about effective electron selective layers as well as point the way to a greater selection of flexible substrates and more stable inverted device designs.

Original languageEnglish
Pages (from-to)24310-24314
Number of pages5
JournalACS Applied Materials and Interfaces
Volume8
Issue number37
DOIs
Publication statusPublished - Sep 21 2016

Fingerprint

Atomic layer deposition
Perovskite
Temperature
Spectroscopic ellipsometry
Raman spectroscopy
X ray photoelectron spectroscopy
Crystalline materials
X ray diffraction
Thin films
perovskite
Electrons
Substrates

Keywords

  • amorphous titanium dioxide
  • atomic layer deposition
  • hybrid perovskites
  • low temperature processing
  • solar energy conversion

ASJC Scopus subject areas

  • Materials Science(all)

Cite this

Amorphous TiO2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics. / Kim, In Soo; Haasch, Richard T.; Cao, Duyen H.; Farha, Omar K.; Hupp, Joseph T; Kanatzidis, Mercouri G; Martinson, Alex B F.

In: ACS Applied Materials and Interfaces, Vol. 8, No. 37, 21.09.2016, p. 24310-24314.

Research output: Contribution to journalArticle

Kim, In Soo ; Haasch, Richard T. ; Cao, Duyen H. ; Farha, Omar K. ; Hupp, Joseph T ; Kanatzidis, Mercouri G ; Martinson, Alex B F. / Amorphous TiO2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics. In: ACS Applied Materials and Interfaces. 2016 ; Vol. 8, No. 37. pp. 24310-24314.
@article{1f9f4174eecd4c0893f22b76883aa58b,
title = "Amorphous TiO2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics",
abstract = "A low-temperature (<120 °C) route to pinhole-free amorphous TiO2 compact layers may pave the way to more efficient, flexible, and stable inverted perovskite halide device designs. Toward this end, we utilize low-temperature thermal atomic layer deposition (ALD) to synthesize ultrathin (12 nm) compact TiO2 underlayers for planar halide perovskite PV. Although device performance with as-deposited TiO2 films is poor, we identify room-temperature UV-O3 treatment as a route to device efficiency comparable to crystalline TiO2 thin films synthesized by higher temperature methods. We further explore the chemical, physical, and interfacial properties that might explain the improved performance through X-ray diffraction, spectroscopic ellipsometry, Raman spectroscopy, and X-ray photoelectron spectroscopy. These findings challenge our intuition about effective electron selective layers as well as point the way to a greater selection of flexible substrates and more stable inverted device designs.",
keywords = "amorphous titanium dioxide, atomic layer deposition, hybrid perovskites, low temperature processing, solar energy conversion",
author = "Kim, {In Soo} and Haasch, {Richard T.} and Cao, {Duyen H.} and Farha, {Omar K.} and Hupp, {Joseph T} and Kanatzidis, {Mercouri G} and Martinson, {Alex B F}",
year = "2016",
month = "9",
day = "21",
doi = "10.1021/acsami.6b07658",
language = "English",
volume = "8",
pages = "24310--24314",
journal = "ACS applied materials & interfaces",
issn = "1944-8244",
publisher = "American Chemical Society",
number = "37",

}

TY - JOUR

T1 - Amorphous TiO2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics

AU - Kim, In Soo

AU - Haasch, Richard T.

AU - Cao, Duyen H.

AU - Farha, Omar K.

AU - Hupp, Joseph T

AU - Kanatzidis, Mercouri G

AU - Martinson, Alex B F

PY - 2016/9/21

Y1 - 2016/9/21

N2 - A low-temperature (<120 °C) route to pinhole-free amorphous TiO2 compact layers may pave the way to more efficient, flexible, and stable inverted perovskite halide device designs. Toward this end, we utilize low-temperature thermal atomic layer deposition (ALD) to synthesize ultrathin (12 nm) compact TiO2 underlayers for planar halide perovskite PV. Although device performance with as-deposited TiO2 films is poor, we identify room-temperature UV-O3 treatment as a route to device efficiency comparable to crystalline TiO2 thin films synthesized by higher temperature methods. We further explore the chemical, physical, and interfacial properties that might explain the improved performance through X-ray diffraction, spectroscopic ellipsometry, Raman spectroscopy, and X-ray photoelectron spectroscopy. These findings challenge our intuition about effective electron selective layers as well as point the way to a greater selection of flexible substrates and more stable inverted device designs.

AB - A low-temperature (<120 °C) route to pinhole-free amorphous TiO2 compact layers may pave the way to more efficient, flexible, and stable inverted perovskite halide device designs. Toward this end, we utilize low-temperature thermal atomic layer deposition (ALD) to synthesize ultrathin (12 nm) compact TiO2 underlayers for planar halide perovskite PV. Although device performance with as-deposited TiO2 films is poor, we identify room-temperature UV-O3 treatment as a route to device efficiency comparable to crystalline TiO2 thin films synthesized by higher temperature methods. We further explore the chemical, physical, and interfacial properties that might explain the improved performance through X-ray diffraction, spectroscopic ellipsometry, Raman spectroscopy, and X-ray photoelectron spectroscopy. These findings challenge our intuition about effective electron selective layers as well as point the way to a greater selection of flexible substrates and more stable inverted device designs.

KW - amorphous titanium dioxide

KW - atomic layer deposition

KW - hybrid perovskites

KW - low temperature processing

KW - solar energy conversion

UR - http://www.scopus.com/inward/record.url?scp=84988602832&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84988602832&partnerID=8YFLogxK

U2 - 10.1021/acsami.6b07658

DO - 10.1021/acsami.6b07658

M3 - Article

AN - SCOPUS:84988602832

VL - 8

SP - 24310

EP - 24314

JO - ACS applied materials & interfaces

JF - ACS applied materials & interfaces

SN - 1944-8244

IS - 37

ER -