An Ideal Spin Filter: Long-Range, High-Spin Selectivity in Chiral Helicoidal 3-Dimensional Metal Organic Frameworks

Uxua Huizi-Rayo, Junkal Gutierrez, Jose Manuel Seco, Vladimiro Mujica, Ismael Diez-Perez, Jesus M. Ugalde, Agnieszka Tercjak, Javier Cepeda, Eider San Sebastian

Research output: Contribution to journalArticlepeer-review

Abstract

An enantiopure, conductive, and paramagnetic crystalline 3-D metal-organic framework (MOF), based on Dy(III) and the l-tartrate chiral ligand, is proved to behave as an almost ideal electron spin filtering material at room temperature, transmitting one spin component only, leading to a spin polarization (SP) power close to 100% in the ±2 V range, which is conserved over a long spatial range, larger than 1 μm in some cases. This impressive spin polarization capacity of this class of nanostructured materials is measured by means of magnetically polarized conductive atomic force microscopy and is attributed to the Chirality-Induced Spin Selectivity (CISS) effect of the material arising from a multidimensional helicity pattern, the inherited chirality of the organic motive, and the enhancing influence of Dy(III) ions on the CISS effect, with large spin-orbit coupling values. Our results represent the first example of a MOF-based and CISS-effect-mediated spin filtering material that shows a nearly perfect SP. These striking results obtained with our robust and easy-to-synthesize chiral MOFs constitute an important step forward in to improve the performance of spin filtering materials for spintronic device fabrication.

Original languageEnglish
Pages (from-to)8476-8482
Number of pages7
JournalNano letters
Volume20
Issue number12
DOIs
Publication statusPublished - Dec 9 2020

Keywords

  • 3D
  • AFM
  • CISS effect
  • Chirality
  • Dy(III)
  • Helicity
  • Metal-Organic Frameworks
  • Spin polarization
  • Spintronic
  • Tartrate

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'An Ideal Spin Filter: Long-Range, High-Spin Selectivity in Chiral Helicoidal 3-Dimensional Metal Organic Frameworks'. Together they form a unique fingerprint.

Cite this