TY - JOUR
T1 - An unusual crystal growth method of the chalcohalide semiconductor, β-Hg3S2Cl2
T2 - A new candidate for hard radiation detection
AU - Wibowo, Arief C.
AU - Malliakas, Christos D.
AU - Li, Hao
AU - Stoumpos, Constantinos C.
AU - Chung, Duck Young
AU - Wessels, Bruce W.
AU - Freeman, Arthur J.
AU - Kanatzidis, Mercouri G.
PY - 2016/5/4
Y1 - 2016/5/4
N2 - We assess the mercury chalcohalide compound, β-Hg3S2Cl2, as a potential semiconductor material for X-ray and γ-ray detection. It has a high density (6.80 g/cm3) and wide band gap (2.56 eV) and crystallizes in the cubic Pm3n space group with a three-dimensional structure comprised of [Hg12S8] cubes with Cl atoms located within and between the cubes, featuring a trigonal pyramidal SHg3 as the main building block. First-principle electronic structure calculations at the density functional theory level predict that the compound has closely lying indirect and direct band gaps. We have successfully grown transparent, single crystals of β-Hg3S2Cl2 up to 7 mm diameter and 1 cm long using a new approach by the partial decomposition of the quaternary Hg3Bi2S2Cl8 compound followed by the formation of β-Hg3S2Cl2 and an impermeable top layer, all happening in situ during vertical Bridgman growth. The decomposition process was optimized by varying peak temperatures and temperature gradients using a 2 mm/h translation rate of the Bridgman technique. Formation of the quaternary Hg3Bi2S2Cl8 followed by its partial decomposition into β-Hg3S2Cl2 was confirmed by in situ temperature-dependent synchrotron powder diffraction studies. The single crystal samples obtained had resistivity of 1010 Ω·cm and mobility-lifetime products of electron and hole carriers of 1.4(4) × 10-4 cm2/V and 7.5(3) × 10-5 cm2/V, respectively. Further, an appreciable Ag X-ray photoconductivity response was observed showing the potential of β-Hg3S2Cl2 as a hard radiation detector material.
AB - We assess the mercury chalcohalide compound, β-Hg3S2Cl2, as a potential semiconductor material for X-ray and γ-ray detection. It has a high density (6.80 g/cm3) and wide band gap (2.56 eV) and crystallizes in the cubic Pm3n space group with a three-dimensional structure comprised of [Hg12S8] cubes with Cl atoms located within and between the cubes, featuring a trigonal pyramidal SHg3 as the main building block. First-principle electronic structure calculations at the density functional theory level predict that the compound has closely lying indirect and direct band gaps. We have successfully grown transparent, single crystals of β-Hg3S2Cl2 up to 7 mm diameter and 1 cm long using a new approach by the partial decomposition of the quaternary Hg3Bi2S2Cl8 compound followed by the formation of β-Hg3S2Cl2 and an impermeable top layer, all happening in situ during vertical Bridgman growth. The decomposition process was optimized by varying peak temperatures and temperature gradients using a 2 mm/h translation rate of the Bridgman technique. Formation of the quaternary Hg3Bi2S2Cl8 followed by its partial decomposition into β-Hg3S2Cl2 was confirmed by in situ temperature-dependent synchrotron powder diffraction studies. The single crystal samples obtained had resistivity of 1010 Ω·cm and mobility-lifetime products of electron and hole carriers of 1.4(4) × 10-4 cm2/V and 7.5(3) × 10-5 cm2/V, respectively. Further, an appreciable Ag X-ray photoconductivity response was observed showing the potential of β-Hg3S2Cl2 as a hard radiation detector material.
UR - http://www.scopus.com/inward/record.url?scp=84969528877&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84969528877&partnerID=8YFLogxK
U2 - 10.1021/acs.cgd.5b01802
DO - 10.1021/acs.cgd.5b01802
M3 - Article
AN - SCOPUS:84969528877
VL - 16
SP - 2678
EP - 2684
JO - Crystal Growth and Design
JF - Crystal Growth and Design
SN - 1528-7483
IS - 5
ER -