Anomalous scaling properties of optical excitations in random media

Alexander L. Burin, Mark A. Ratner

Research output: Contribution to journalConference article

Abstract

The eigenstates of small radius molecular excitations, coupled by the resonant dipole-dipole interaction, are examined for a system of random resonant centers. Anomalous scaling properties are seen even in the absence of external disordering, i.e. their properties are intermediate between localized and `true' delocalized states. The effective transport properties of excitations can be described in terms of anomalous diffusion, with a distance dependent diffusion coefficient scaling as D to approximately 1/R. This anomalous behavior agrees with our simulation of boundary quenching of excitons and with the related experiment on organic light emitting diodes (OLEDs).

Original languageEnglish
Pages (from-to)601-602
Number of pages2
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume3749
Publication statusPublished - Jan 1 1999
EventProceedings of the 1999 18th Congress of the International Commission for Optics (ICO XVIII): Optics for the Next Millennium - San Francisco, CA, USA
Duration: Aug 2 1999Aug 6 1999

    Fingerprint

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Cite this