Binding of amines to the O2-Evolving Center of photosystem II

Warren F. Beck, Gary W Brudvig

Research output: Contribution to journalArticle

92 Citations (Scopus)

Abstract

The binding of several primary amines to the O2-evolving center (OEC) of photosystem II (PSII) has been studied by using low-temperature electron paramagnetic resonance (EPR) spectroscopy of the S2 state. Spinach PSII membranes treated with NH4Cl at pH 7.5 produce a novel S2-state multiline EPR spectrum with a 67.5-G hyperfine line spacing when the S2 state is produced by illumination at 0°C [Beck, W. F., de Paula, J. C., & Brudvig, G. W. (1986) J. Am. Chem. Soc. 108, 4018-4022]. The altered hyperfine line spacing and temperature dependence of the S2-state multiline EPR signal observed in the presence of NH4Cl are direct spectroscopic evidence for coordination of one or more NH3 molecules to the Mn site in the OEC. In contrast, the hyperfine line pattern and temperature dependence of the S2-state multiline EPR spectrum in the presence of tris(hydroxymethyl)aminomethane, 2-amino-2-ethyl-1,3-propanediol, or CH3NH2 at pH 7.5 were the same as those observed in untreated PSII membranes. We conclude that amines other than NH3 do not readily bind to the Mn site in the S2 state because of steric factors. Further, NH3 binds to an additional site on the OEC, not necessarily located on Mn, and alters the stability of the S2-state g = 4.1 EPR signal species. The effects on the intensities of the g = 4.1 and multiline EPR signals as the NH3 concentration was varied indicate that both EPR signals arise from the same paramagnetic site and that binding of NH3 to the OEC affects an equilibrium between two configurations exhibiting the different EPR signals. The results of this paper support the proposal that a single Mn site functions on the electron donor side of PSII in the mechanism of photosynthetic O2 evolution; the Mn site functions both in the storage of oxidizing equivalents and, considering the steric selectivity of the Mn site for the coordination of small Lewis bases, in binding and oxidation of substrate H2O molecules.

Original languageEnglish
Pages (from-to)6479-6486
Number of pages8
JournalBiochemistry
Volume25
Issue number21
Publication statusPublished - 1986

Fingerprint

Photosystem II Protein Complex
Electron Spin Resonance Spectroscopy
Amines
Paramagnetic resonance
Temperature
Lewis Bases
Membranes
Tromethamine
Molecules
Spinacia oleracea
Lighting
Spectrum Analysis
Binding Sites
Spectroscopy
Electrons
Oxidation
Substrates

ASJC Scopus subject areas

  • Biochemistry

Cite this

Binding of amines to the O2-Evolving Center of photosystem II. / Beck, Warren F.; Brudvig, Gary W.

In: Biochemistry, Vol. 25, No. 21, 1986, p. 6479-6486.

Research output: Contribution to journalArticle

Beck, Warren F. ; Brudvig, Gary W. / Binding of amines to the O2-Evolving Center of photosystem II. In: Biochemistry. 1986 ; Vol. 25, No. 21. pp. 6479-6486.
@article{ba28ad8a16de49b682c5adb2fab82476,
title = "Binding of amines to the O2-Evolving Center of photosystem II",
abstract = "The binding of several primary amines to the O2-evolving center (OEC) of photosystem II (PSII) has been studied by using low-temperature electron paramagnetic resonance (EPR) spectroscopy of the S2 state. Spinach PSII membranes treated with NH4Cl at pH 7.5 produce a novel S2-state multiline EPR spectrum with a 67.5-G hyperfine line spacing when the S2 state is produced by illumination at 0°C [Beck, W. F., de Paula, J. C., & Brudvig, G. W. (1986) J. Am. Chem. Soc. 108, 4018-4022]. The altered hyperfine line spacing and temperature dependence of the S2-state multiline EPR signal observed in the presence of NH4Cl are direct spectroscopic evidence for coordination of one or more NH3 molecules to the Mn site in the OEC. In contrast, the hyperfine line pattern and temperature dependence of the S2-state multiline EPR spectrum in the presence of tris(hydroxymethyl)aminomethane, 2-amino-2-ethyl-1,3-propanediol, or CH3NH2 at pH 7.5 were the same as those observed in untreated PSII membranes. We conclude that amines other than NH3 do not readily bind to the Mn site in the S2 state because of steric factors. Further, NH3 binds to an additional site on the OEC, not necessarily located on Mn, and alters the stability of the S2-state g = 4.1 EPR signal species. The effects on the intensities of the g = 4.1 and multiline EPR signals as the NH3 concentration was varied indicate that both EPR signals arise from the same paramagnetic site and that binding of NH3 to the OEC affects an equilibrium between two configurations exhibiting the different EPR signals. The results of this paper support the proposal that a single Mn site functions on the electron donor side of PSII in the mechanism of photosynthetic O2 evolution; the Mn site functions both in the storage of oxidizing equivalents and, considering the steric selectivity of the Mn site for the coordination of small Lewis bases, in binding and oxidation of substrate H2O molecules.",
author = "Beck, {Warren F.} and Brudvig, {Gary W}",
year = "1986",
language = "English",
volume = "25",
pages = "6479--6486",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "21",

}

TY - JOUR

T1 - Binding of amines to the O2-Evolving Center of photosystem II

AU - Beck, Warren F.

AU - Brudvig, Gary W

PY - 1986

Y1 - 1986

N2 - The binding of several primary amines to the O2-evolving center (OEC) of photosystem II (PSII) has been studied by using low-temperature electron paramagnetic resonance (EPR) spectroscopy of the S2 state. Spinach PSII membranes treated with NH4Cl at pH 7.5 produce a novel S2-state multiline EPR spectrum with a 67.5-G hyperfine line spacing when the S2 state is produced by illumination at 0°C [Beck, W. F., de Paula, J. C., & Brudvig, G. W. (1986) J. Am. Chem. Soc. 108, 4018-4022]. The altered hyperfine line spacing and temperature dependence of the S2-state multiline EPR signal observed in the presence of NH4Cl are direct spectroscopic evidence for coordination of one or more NH3 molecules to the Mn site in the OEC. In contrast, the hyperfine line pattern and temperature dependence of the S2-state multiline EPR spectrum in the presence of tris(hydroxymethyl)aminomethane, 2-amino-2-ethyl-1,3-propanediol, or CH3NH2 at pH 7.5 were the same as those observed in untreated PSII membranes. We conclude that amines other than NH3 do not readily bind to the Mn site in the S2 state because of steric factors. Further, NH3 binds to an additional site on the OEC, not necessarily located on Mn, and alters the stability of the S2-state g = 4.1 EPR signal species. The effects on the intensities of the g = 4.1 and multiline EPR signals as the NH3 concentration was varied indicate that both EPR signals arise from the same paramagnetic site and that binding of NH3 to the OEC affects an equilibrium between two configurations exhibiting the different EPR signals. The results of this paper support the proposal that a single Mn site functions on the electron donor side of PSII in the mechanism of photosynthetic O2 evolution; the Mn site functions both in the storage of oxidizing equivalents and, considering the steric selectivity of the Mn site for the coordination of small Lewis bases, in binding and oxidation of substrate H2O molecules.

AB - The binding of several primary amines to the O2-evolving center (OEC) of photosystem II (PSII) has been studied by using low-temperature electron paramagnetic resonance (EPR) spectroscopy of the S2 state. Spinach PSII membranes treated with NH4Cl at pH 7.5 produce a novel S2-state multiline EPR spectrum with a 67.5-G hyperfine line spacing when the S2 state is produced by illumination at 0°C [Beck, W. F., de Paula, J. C., & Brudvig, G. W. (1986) J. Am. Chem. Soc. 108, 4018-4022]. The altered hyperfine line spacing and temperature dependence of the S2-state multiline EPR signal observed in the presence of NH4Cl are direct spectroscopic evidence for coordination of one or more NH3 molecules to the Mn site in the OEC. In contrast, the hyperfine line pattern and temperature dependence of the S2-state multiline EPR spectrum in the presence of tris(hydroxymethyl)aminomethane, 2-amino-2-ethyl-1,3-propanediol, or CH3NH2 at pH 7.5 were the same as those observed in untreated PSII membranes. We conclude that amines other than NH3 do not readily bind to the Mn site in the S2 state because of steric factors. Further, NH3 binds to an additional site on the OEC, not necessarily located on Mn, and alters the stability of the S2-state g = 4.1 EPR signal species. The effects on the intensities of the g = 4.1 and multiline EPR signals as the NH3 concentration was varied indicate that both EPR signals arise from the same paramagnetic site and that binding of NH3 to the OEC affects an equilibrium between two configurations exhibiting the different EPR signals. The results of this paper support the proposal that a single Mn site functions on the electron donor side of PSII in the mechanism of photosynthetic O2 evolution; the Mn site functions both in the storage of oxidizing equivalents and, considering the steric selectivity of the Mn site for the coordination of small Lewis bases, in binding and oxidation of substrate H2O molecules.

UR - http://www.scopus.com/inward/record.url?scp=0023054745&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023054745&partnerID=8YFLogxK

M3 - Article

C2 - 3024709

AN - SCOPUS:0023054745

VL - 25

SP - 6479

EP - 6486

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 21

ER -