TY - JOUR
T1 - Biomimetic CO2 reduction based on Mg complexes
AU - Palma, Julio L.
AU - Kim, Kelly E.
AU - Stratton, William P.
AU - Brudvig, Gary W.
AU - Crabtree, Robert H.
AU - Hazari, Nilay
AU - Batista, Victor S.
PY - 2011/8/25
Y1 - 2011/8/25
N2 - The development of cheap, robust and efficient photocatalytic cells for solar powered CO2 reduction would allow the sustainable production of fuel from renewable resources. Progress in this field requires the development of efficient catalytic materials for multielectron reduction reactions and C-C bond formation from CO2. Our photocatalytic cells for biomimetic CO2 fixation are inspired by the Calvin cycle in Nature, where the enzyme RuBisCO facilitates the reaction of CO2 with unsaturated sugar precursors. The cell has three components: (i) a photoanode where solar light is used to extract protons and electrons from water, releasing O2, (ii) an intermediate redox neutral step where Mg2+ Lewis acids couple CO2 with unsaturated polyols to form sugar, and (iii) a cathode where the oxidized polyol is catalytically reduced. We report the synthesis and spectroscopic characterization of two biomimetic Mg complexes as well as the computational analysis based on quantum chemistry modeling of reaction intermediates.
AB - The development of cheap, robust and efficient photocatalytic cells for solar powered CO2 reduction would allow the sustainable production of fuel from renewable resources. Progress in this field requires the development of efficient catalytic materials for multielectron reduction reactions and C-C bond formation from CO2. Our photocatalytic cells for biomimetic CO2 fixation are inspired by the Calvin cycle in Nature, where the enzyme RuBisCO facilitates the reaction of CO2 with unsaturated sugar precursors. The cell has three components: (i) a photoanode where solar light is used to extract protons and electrons from water, releasing O2, (ii) an intermediate redox neutral step where Mg2+ Lewis acids couple CO2 with unsaturated polyols to form sugar, and (iii) a cathode where the oxidized polyol is catalytically reduced. We report the synthesis and spectroscopic characterization of two biomimetic Mg complexes as well as the computational analysis based on quantum chemistry modeling of reaction intermediates.
UR - http://www.scopus.com/inward/record.url?scp=80051882095&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80051882095&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:80051882095
JO - ACS National Meeting Book of Abstracts
JF - ACS National Meeting Book of Abstracts
SN - 0065-7727
T2 - 241st ACS National Meeting and Exposition
Y2 - 27 March 2011 through 31 March 2011
ER -