Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers

M. D. Malinsky, K. L. Kelly, George C Schatz, R. P. Van Duyne

Research output: Contribution to journalArticle

903 Citations (Scopus)

Abstract

In this paper, we explore the optical properties of Ag nanoparticles chemically modified with alkanethiol self-assembled monolayers (SAMs) by measuring the localized surface plasmon resonance (LSPR) spectrum using UV-vis extinction spectroscopy. For all the experiments presented here, the Ag nanoparticles were fabricated using the technique of nanosphere lithography (NSL) and had in-plane widths of 100 nm and out-of-plane heights of 50 nm. We first demonstrate that unmodified nanoparticles are extremely susceptible to slight changes in 3-dimensional structure when exposed to various solvents. These structural effects can have dramatic effects on the extinction maximum, λmax, of the LSPR shifting it to the blue by over 100 nm. The significant discovery reported here is that λmax for NSL fabricated Ag nanoparticles is extremely sensitive to the SAM properties. We will demonstrate the following new features: (1) λmax of the LSPR linearly shifts to the red 3 nm for every carbon atom in the alkane chain; (2) spectral shifts as large as 40 nm are caused by only 60 000 alkanethiol molecules per nanoparticle, which corresponds to only 100 zmol of adsorbate; and (3) the nanoparticles' sensitivity to bulk external environment is only attenuated by 20% when the nanoparticles are modified with the longest chain alkanethiol (1-hexadecanethiol, ∼2 nm). Experimental extinction spectra were modeled by using Mie theory for Ag nanospheres with dielectric shells intended to mimic the self-assembled monolayer (SAM) in thickness and refractive index. We find that the Mie theory qualitatively predicts the experimentally observed trend that λmax linearly shifts to the red with respect to shell thickness, or alkanethiol chain length; however, the theory underestimates the sensitivity by approximately a factor of 4. Excellent correlation between theory and experiment was observed when Mie theory was used to predict the degree of attenuation in LSPR sensitivity to bulk external environment when the nanoparticle is encapsulated in a dielectric shell similar to an alkanethiol SAM. Finally, we demonstrate that Ag nanoparticles modified with functionalized SAMs can be used in sensing applications. Here, we show that the LSPR shifts to the red 5 nm with the adsorption of the polypeptide poly-L-lysine (PL) to Ag nanoparticles modified with deprotonated carboxylate groups from 11-mercaptoundecanoic acid (11-MUA). Furthermore, we will show that this system behaves reversibly and exhibits no detectable nonspecific binding.

Original languageEnglish
Pages (from-to)1471-1482
Number of pages12
JournalJournal of the American Chemical Society
Volume123
Issue number7
DOIs
Publication statusPublished - Feb 21 2001

Fingerprint

Surface Plasmon Resonance
Surface plasmon resonance
Self assembled monolayers
Chain length
Silver
Nanoparticles
Nanospheres
Lithography
Shells (structures)
Correlation theory
Refractometry
Alkanes
Polypeptides
Adsorbates
Paraffins
Adsorption
Lysine
Refractive index
Spectrum Analysis
Carbon

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

@article{8162a5b21fb94845a73c780c81d9a56b,
title = "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers",
abstract = "In this paper, we explore the optical properties of Ag nanoparticles chemically modified with alkanethiol self-assembled monolayers (SAMs) by measuring the localized surface plasmon resonance (LSPR) spectrum using UV-vis extinction spectroscopy. For all the experiments presented here, the Ag nanoparticles were fabricated using the technique of nanosphere lithography (NSL) and had in-plane widths of 100 nm and out-of-plane heights of 50 nm. We first demonstrate that unmodified nanoparticles are extremely susceptible to slight changes in 3-dimensional structure when exposed to various solvents. These structural effects can have dramatic effects on the extinction maximum, λmax, of the LSPR shifting it to the blue by over 100 nm. The significant discovery reported here is that λmax for NSL fabricated Ag nanoparticles is extremely sensitive to the SAM properties. We will demonstrate the following new features: (1) λmax of the LSPR linearly shifts to the red 3 nm for every carbon atom in the alkane chain; (2) spectral shifts as large as 40 nm are caused by only 60 000 alkanethiol molecules per nanoparticle, which corresponds to only 100 zmol of adsorbate; and (3) the nanoparticles' sensitivity to bulk external environment is only attenuated by 20{\%} when the nanoparticles are modified with the longest chain alkanethiol (1-hexadecanethiol, ∼2 nm). Experimental extinction spectra were modeled by using Mie theory for Ag nanospheres with dielectric shells intended to mimic the self-assembled monolayer (SAM) in thickness and refractive index. We find that the Mie theory qualitatively predicts the experimentally observed trend that λmax linearly shifts to the red with respect to shell thickness, or alkanethiol chain length; however, the theory underestimates the sensitivity by approximately a factor of 4. Excellent correlation between theory and experiment was observed when Mie theory was used to predict the degree of attenuation in LSPR sensitivity to bulk external environment when the nanoparticle is encapsulated in a dielectric shell similar to an alkanethiol SAM. Finally, we demonstrate that Ag nanoparticles modified with functionalized SAMs can be used in sensing applications. Here, we show that the LSPR shifts to the red 5 nm with the adsorption of the polypeptide poly-L-lysine (PL) to Ag nanoparticles modified with deprotonated carboxylate groups from 11-mercaptoundecanoic acid (11-MUA). Furthermore, we will show that this system behaves reversibly and exhibits no detectable nonspecific binding.",
author = "Malinsky, {M. D.} and Kelly, {K. L.} and Schatz, {George C} and {Van Duyne}, {R. P.}",
year = "2001",
month = "2",
day = "21",
doi = "10.1021/ja003312a",
language = "English",
volume = "123",
pages = "1471--1482",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "7",

}

TY - JOUR

T1 - Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers

AU - Malinsky, M. D.

AU - Kelly, K. L.

AU - Schatz, George C

AU - Van Duyne, R. P.

PY - 2001/2/21

Y1 - 2001/2/21

N2 - In this paper, we explore the optical properties of Ag nanoparticles chemically modified with alkanethiol self-assembled monolayers (SAMs) by measuring the localized surface plasmon resonance (LSPR) spectrum using UV-vis extinction spectroscopy. For all the experiments presented here, the Ag nanoparticles were fabricated using the technique of nanosphere lithography (NSL) and had in-plane widths of 100 nm and out-of-plane heights of 50 nm. We first demonstrate that unmodified nanoparticles are extremely susceptible to slight changes in 3-dimensional structure when exposed to various solvents. These structural effects can have dramatic effects on the extinction maximum, λmax, of the LSPR shifting it to the blue by over 100 nm. The significant discovery reported here is that λmax for NSL fabricated Ag nanoparticles is extremely sensitive to the SAM properties. We will demonstrate the following new features: (1) λmax of the LSPR linearly shifts to the red 3 nm for every carbon atom in the alkane chain; (2) spectral shifts as large as 40 nm are caused by only 60 000 alkanethiol molecules per nanoparticle, which corresponds to only 100 zmol of adsorbate; and (3) the nanoparticles' sensitivity to bulk external environment is only attenuated by 20% when the nanoparticles are modified with the longest chain alkanethiol (1-hexadecanethiol, ∼2 nm). Experimental extinction spectra were modeled by using Mie theory for Ag nanospheres with dielectric shells intended to mimic the self-assembled monolayer (SAM) in thickness and refractive index. We find that the Mie theory qualitatively predicts the experimentally observed trend that λmax linearly shifts to the red with respect to shell thickness, or alkanethiol chain length; however, the theory underestimates the sensitivity by approximately a factor of 4. Excellent correlation between theory and experiment was observed when Mie theory was used to predict the degree of attenuation in LSPR sensitivity to bulk external environment when the nanoparticle is encapsulated in a dielectric shell similar to an alkanethiol SAM. Finally, we demonstrate that Ag nanoparticles modified with functionalized SAMs can be used in sensing applications. Here, we show that the LSPR shifts to the red 5 nm with the adsorption of the polypeptide poly-L-lysine (PL) to Ag nanoparticles modified with deprotonated carboxylate groups from 11-mercaptoundecanoic acid (11-MUA). Furthermore, we will show that this system behaves reversibly and exhibits no detectable nonspecific binding.

AB - In this paper, we explore the optical properties of Ag nanoparticles chemically modified with alkanethiol self-assembled monolayers (SAMs) by measuring the localized surface plasmon resonance (LSPR) spectrum using UV-vis extinction spectroscopy. For all the experiments presented here, the Ag nanoparticles were fabricated using the technique of nanosphere lithography (NSL) and had in-plane widths of 100 nm and out-of-plane heights of 50 nm. We first demonstrate that unmodified nanoparticles are extremely susceptible to slight changes in 3-dimensional structure when exposed to various solvents. These structural effects can have dramatic effects on the extinction maximum, λmax, of the LSPR shifting it to the blue by over 100 nm. The significant discovery reported here is that λmax for NSL fabricated Ag nanoparticles is extremely sensitive to the SAM properties. We will demonstrate the following new features: (1) λmax of the LSPR linearly shifts to the red 3 nm for every carbon atom in the alkane chain; (2) spectral shifts as large as 40 nm are caused by only 60 000 alkanethiol molecules per nanoparticle, which corresponds to only 100 zmol of adsorbate; and (3) the nanoparticles' sensitivity to bulk external environment is only attenuated by 20% when the nanoparticles are modified with the longest chain alkanethiol (1-hexadecanethiol, ∼2 nm). Experimental extinction spectra were modeled by using Mie theory for Ag nanospheres with dielectric shells intended to mimic the self-assembled monolayer (SAM) in thickness and refractive index. We find that the Mie theory qualitatively predicts the experimentally observed trend that λmax linearly shifts to the red with respect to shell thickness, or alkanethiol chain length; however, the theory underestimates the sensitivity by approximately a factor of 4. Excellent correlation between theory and experiment was observed when Mie theory was used to predict the degree of attenuation in LSPR sensitivity to bulk external environment when the nanoparticle is encapsulated in a dielectric shell similar to an alkanethiol SAM. Finally, we demonstrate that Ag nanoparticles modified with functionalized SAMs can be used in sensing applications. Here, we show that the LSPR shifts to the red 5 nm with the adsorption of the polypeptide poly-L-lysine (PL) to Ag nanoparticles modified with deprotonated carboxylate groups from 11-mercaptoundecanoic acid (11-MUA). Furthermore, we will show that this system behaves reversibly and exhibits no detectable nonspecific binding.

UR - http://www.scopus.com/inward/record.url?scp=0035925216&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035925216&partnerID=8YFLogxK

U2 - 10.1021/ja003312a

DO - 10.1021/ja003312a

M3 - Article

AN - SCOPUS:0035925216

VL - 123

SP - 1471

EP - 1482

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 7

ER -