Characterization of the O2-evolving reaction catalyzed by [(terpy)(H2O)MnIII(O)2MnIV (OH2(terpy)](NO3)3 (terpy = 2,2′

6,2″-terpyridine)

J. Limburg, J. S. Vrettos, H. Chen, J. C. De Paula, R. H. Crabtree, Gary W Brudvig

Research output: Contribution to journalArticle

279 Citations (Scopus)

Abstract

The complex [(terpy)(H2O)MnIII(O)2MnlV (OH2)(terpy)](NO3)3 (terpy = 2,2′:6,2″-terpyridine) (1) catalyzes O2 evolution from either KHSO5 (potassium oxone) or NaOC1. The reactions follow Michaelis-Menten kinetics where Vmax = 2420 ± 490 mol O2 (mol 1)-1 hr-1 and Km = 53 ± 5 mM for oxone ([1] = 7.5 μM), and Vmax = 6.5 ± 0.3 mol O2 (mol 1)-1 hr-1 and KM = 39 ± 4 mM for hypochlorite ([1] = 70 μM), with first-order kinetics observed in 1 for both oxidants. A mechanism is proposed having a preequilibrium between 1 and HSO5- or OCI-, supported by the isolation and structural characterization of [(terpy)-(SO4)MnIV(O)2MnlV (O4S)(terpy)] (2). Isotope-labeling studies using H218O and KHS16O5 show that O2 evolution proceeds via an intermediate that can exchange with water, where Raman spectroscopy has been used to confirm that the active oxygen of HSO5- is nonexchanging (t1/2 ≫ 1 h). The amount of label incorporated into O2 is dependent on the relative concentrations of oxone and 1.32O2:34O2:36 O2 is 91.9 ± 0.3:7.6 ± 0.3:0.51 ± 0.48, when [HSO5-] = 50 mM (0.5 mM 1), and 49 ± 21:39 ± 15:12 ± 6 when [HSO5-] = 15 mM (0.75 mM 1). The rate-limiting step of O2 evolution is proposed to be formation of a formally MnV=O moiety which could then competitively react with either oxone or water/hydroxide to produce O2. These results show that 1 serves as a functional model for photosynthetic water oxidation.

Original languageEnglish
Pages (from-to)423-430
Number of pages8
JournalJournal of the American Chemical Society
Volume123
Issue number3
DOIs
Publication statusPublished - Jan 24 2001

Fingerprint

Water
Kinetics
Isotope Labeling
Oxidants
Hypochlorous Acid
Labeling
Isotopes
Potassium
Raman spectroscopy
Raman Spectrum Analysis
Labels
Reactive Oxygen Species
Oxidation
Oxygen
potassium peroxymonosulfuric acid
hydroxide ion

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Characterization of the O2-evolving reaction catalyzed by [(terpy)(H2O)MnIII(O)2MnIV (OH2(terpy)](NO3)3 (terpy = 2,2′ : 6,2″-terpyridine). / Limburg, J.; Vrettos, J. S.; Chen, H.; De Paula, J. C.; Crabtree, R. H.; Brudvig, Gary W.

In: Journal of the American Chemical Society, Vol. 123, No. 3, 24.01.2001, p. 423-430.

Research output: Contribution to journalArticle

@article{c4f7c03098d34a06a1944bc798861f36,
title = "Characterization of the O2-evolving reaction catalyzed by [(terpy)(H2O)MnIII(O)2MnIV (OH2(terpy)](NO3)3 (terpy = 2,2′: 6,2″-terpyridine)",
abstract = "The complex [(terpy)(H2O)MnIII(O)2MnlV (OH2)(terpy)](NO3)3 (terpy = 2,2′:6,2″-terpyridine) (1) catalyzes O2 evolution from either KHSO5 (potassium oxone) or NaOC1. The reactions follow Michaelis-Menten kinetics where Vmax = 2420 ± 490 mol O2 (mol 1)-1 hr-1 and Km = 53 ± 5 mM for oxone ([1] = 7.5 μM), and Vmax = 6.5 ± 0.3 mol O2 (mol 1)-1 hr-1 and KM = 39 ± 4 mM for hypochlorite ([1] = 70 μM), with first-order kinetics observed in 1 for both oxidants. A mechanism is proposed having a preequilibrium between 1 and HSO5- or OCI-, supported by the isolation and structural characterization of [(terpy)-(SO4)MnIV(O)2MnlV (O4S)(terpy)] (2). Isotope-labeling studies using H218O and KHS16O5 show that O2 evolution proceeds via an intermediate that can exchange with water, where Raman spectroscopy has been used to confirm that the active oxygen of HSO5- is nonexchanging (t1/2 ≫ 1 h). The amount of label incorporated into O2 is dependent on the relative concentrations of oxone and 1.32O2:34O2:36 O2 is 91.9 ± 0.3:7.6 ± 0.3:0.51 ± 0.48, when [HSO5-] = 50 mM (0.5 mM 1), and 49 ± 21:39 ± 15:12 ± 6 when [HSO5-] = 15 mM (0.75 mM 1). The rate-limiting step of O2 evolution is proposed to be formation of a formally MnV=O moiety which could then competitively react with either oxone or water/hydroxide to produce O2. These results show that 1 serves as a functional model for photosynthetic water oxidation.",
author = "J. Limburg and Vrettos, {J. S.} and H. Chen and {De Paula}, {J. C.} and Crabtree, {R. H.} and Brudvig, {Gary W}",
year = "2001",
month = "1",
day = "24",
doi = "10.1021/ja001090a",
language = "English",
volume = "123",
pages = "423--430",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "3",

}

TY - JOUR

T1 - Characterization of the O2-evolving reaction catalyzed by [(terpy)(H2O)MnIII(O)2MnIV (OH2(terpy)](NO3)3 (terpy = 2,2′

T2 - 6,2″-terpyridine)

AU - Limburg, J.

AU - Vrettos, J. S.

AU - Chen, H.

AU - De Paula, J. C.

AU - Crabtree, R. H.

AU - Brudvig, Gary W

PY - 2001/1/24

Y1 - 2001/1/24

N2 - The complex [(terpy)(H2O)MnIII(O)2MnlV (OH2)(terpy)](NO3)3 (terpy = 2,2′:6,2″-terpyridine) (1) catalyzes O2 evolution from either KHSO5 (potassium oxone) or NaOC1. The reactions follow Michaelis-Menten kinetics where Vmax = 2420 ± 490 mol O2 (mol 1)-1 hr-1 and Km = 53 ± 5 mM for oxone ([1] = 7.5 μM), and Vmax = 6.5 ± 0.3 mol O2 (mol 1)-1 hr-1 and KM = 39 ± 4 mM for hypochlorite ([1] = 70 μM), with first-order kinetics observed in 1 for both oxidants. A mechanism is proposed having a preequilibrium between 1 and HSO5- or OCI-, supported by the isolation and structural characterization of [(terpy)-(SO4)MnIV(O)2MnlV (O4S)(terpy)] (2). Isotope-labeling studies using H218O and KHS16O5 show that O2 evolution proceeds via an intermediate that can exchange with water, where Raman spectroscopy has been used to confirm that the active oxygen of HSO5- is nonexchanging (t1/2 ≫ 1 h). The amount of label incorporated into O2 is dependent on the relative concentrations of oxone and 1.32O2:34O2:36 O2 is 91.9 ± 0.3:7.6 ± 0.3:0.51 ± 0.48, when [HSO5-] = 50 mM (0.5 mM 1), and 49 ± 21:39 ± 15:12 ± 6 when [HSO5-] = 15 mM (0.75 mM 1). The rate-limiting step of O2 evolution is proposed to be formation of a formally MnV=O moiety which could then competitively react with either oxone or water/hydroxide to produce O2. These results show that 1 serves as a functional model for photosynthetic water oxidation.

AB - The complex [(terpy)(H2O)MnIII(O)2MnlV (OH2)(terpy)](NO3)3 (terpy = 2,2′:6,2″-terpyridine) (1) catalyzes O2 evolution from either KHSO5 (potassium oxone) or NaOC1. The reactions follow Michaelis-Menten kinetics where Vmax = 2420 ± 490 mol O2 (mol 1)-1 hr-1 and Km = 53 ± 5 mM for oxone ([1] = 7.5 μM), and Vmax = 6.5 ± 0.3 mol O2 (mol 1)-1 hr-1 and KM = 39 ± 4 mM for hypochlorite ([1] = 70 μM), with first-order kinetics observed in 1 for both oxidants. A mechanism is proposed having a preequilibrium between 1 and HSO5- or OCI-, supported by the isolation and structural characterization of [(terpy)-(SO4)MnIV(O)2MnlV (O4S)(terpy)] (2). Isotope-labeling studies using H218O and KHS16O5 show that O2 evolution proceeds via an intermediate that can exchange with water, where Raman spectroscopy has been used to confirm that the active oxygen of HSO5- is nonexchanging (t1/2 ≫ 1 h). The amount of label incorporated into O2 is dependent on the relative concentrations of oxone and 1.32O2:34O2:36 O2 is 91.9 ± 0.3:7.6 ± 0.3:0.51 ± 0.48, when [HSO5-] = 50 mM (0.5 mM 1), and 49 ± 21:39 ± 15:12 ± 6 when [HSO5-] = 15 mM (0.75 mM 1). The rate-limiting step of O2 evolution is proposed to be formation of a formally MnV=O moiety which could then competitively react with either oxone or water/hydroxide to produce O2. These results show that 1 serves as a functional model for photosynthetic water oxidation.

UR - http://www.scopus.com/inward/record.url?scp=0035941496&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035941496&partnerID=8YFLogxK

U2 - 10.1021/ja001090a

DO - 10.1021/ja001090a

M3 - Article

VL - 123

SP - 423

EP - 430

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 3

ER -