Charge Transfer Dynamics of Phase-Segregated Halide Perovskites: CH 3 NH 3 PbCl 3 and CH 3 NH 3 PbI 3 or (C 4 H 9 NH 3 ) 2 (CH 3 NH 3 ) n-1 Pb n I 3 n+1 Mixtures

Duyen H. Cao, Peijun Guo, Arun Mannodi-Kanakkithodi, Gary P. Wiederrecht, David J. Gosztola, Nari Jeon, Richard D. Schaller, Maria K.Y. Chan, Alex B.F. Martinson

Research output: Contribution to journalArticle

Abstract

Lead halide perovskites present a versatile class of solution-processable semiconductors with highly tunable bandgaps that span ultraviolet, visible, and near-infrared portions of the spectrum. We explore phase-separated chloride and iodide lead perovskite mixtures as candidate materials for intermediate band applications in future photovoltaics. X-ray diffraction and scanning electron microscopy reveal that deposition of precursor solutions across the MAPbCl 3 /MAPbI 3 composition space affords quasi-epitaxial cocrystallized films, in which the two perovskites do not alloy but instead remain phase-segregated. First-principle calculations further support the formation of an epitaxial interface and predict energy offsets in the valence band and conduction band edges that could result in intermediate energy absorption. The charge dynamics of variable mixtures of the relatively narrow bandgap (1.57 eV) MAPbI 3 perovskite and wide bandgap (3.02 eV) MAPbCl 3 are probed to map charge and energy flow direction and kinetics. Time-resolved photoluminescence and transient absorption measurements reveal charge transfer of photoexcited carriers in MAPbCl 3 to MAPbI 3 in tens of picoseconds. The rate of quenching can be further tuned by replacing MAPbI 3 with two-dimensional Ruddlesden-Popper (BA) 2 (MA) n-1 Pb n I 3n+1 (n = 3, 2, and 1) perovskites, which also remain phase-separated.

Original languageEnglish
Pages (from-to)9583-9593
Number of pages11
JournalACS Applied Materials and Interfaces
Volume11
Issue number9
DOIs
Publication statusPublished - Mar 6 2019

    Fingerprint

Keywords

  • 2D perovskites
  • CH NH PbCl
  • charge transfer dynamics
  • halide perovskites
  • phase-segregated

ASJC Scopus subject areas

  • Materials Science(all)

Cite this