Charge transport in photofunctional nanoparticles self-assembled from zinc 5,10,15,20-tetrakis(perylenediimide)porphyrin building blocks

Tamar Van der Boom, Ryan T. Hayes, Yongyu Zhao, Patrick J. Bushard, Emily A. Weiss, Michael R. Wasielewski

Research output: Contribution to journalArticle

342 Citations (Scopus)

Abstract

Molecules designed to carry out photochemical energy conversion typically employ several sequential electron transfers, as do photosynthetic proteins. Yet, these molecules typically do not achieve the extensive charge transport characteristic of semiconductor devices. We have prepared a large molecule in which four perylene-3,4:9,10-tetracarboxydiimide (PDI) molecules that both collect photons and accept electrons are attached to a central zinc 5,10,15,20-tetraphenylporphyrin (ZnTPP) electron donor. This molecule self-assembles into ordered nanoparticles both in solution and in the solid-state, driven by van der Waals stacking of the PDI molecules. Photoexcitation of the nanoparticles results in quantitative charge separation in 3.2 ps to form ZnTPP+PDI- radical ion pairs, in which the radical anion rapidly migrates to PDI molecules that are, on average, 21 Å away, as evidenced by magnetic field effects on the yield of the PDI triplet state that results from radical ion pair recombination. These nanoparticles exhibit charge transport properties that combine important features from both photosynthetic and semiconductor photoconversion systems.

Original languageEnglish
Pages (from-to)9582-9590
Number of pages9
JournalJournal of the American Chemical Society
Volume124
Issue number32
DOIs
Publication statusPublished - Aug 14 2002

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Charge transport in photofunctional nanoparticles self-assembled from zinc 5,10,15,20-tetrakis(perylenediimide)porphyrin building blocks'. Together they form a unique fingerprint.

  • Cite this