Chemical and electrical passivation of silicon (111) surfaces through functionalization with sterically hindered alkyl groups

E. Joseph Nemanick, Patrick T. Hurley, Bruce S. Brunschwig, Nathan S. Lewis

Research output: Contribution to journalArticlepeer-review

103 Citations (Scopus)


Crystalline Si(111) surfaces have been alkylated in a two-step chlorination/alkylation process using sterically bulky alkyl groups such as (CH3)2CH - (iso-propyl), (CH3)3C - (tert-butyl), and C6H5 - (phenyl) moieties. X-ray photoelectron spectroscopic (XPS) data in the C Is region of such surfaces exhibited a low energy emission at 283.9 binding eV, consistent with carbon bonded to Si. The C 1s XPS data indicated that the alkyls were present at lower coverages than methyl groups on CH3-terminated Si(111) surfaces. Despite the lower alkyl group coverage, no Cl was detected after alkylation. Functionalization with the bulky alkyl groups effectively inhibited the oxidation of Si(111) surfaces in air and produced low (<100 cm s -1) surface recombination velocities. Transmission infrared spectroscopy indicated that the surfaces were partially H-terminated after the functionalization reaction. Application of a reducing potential, -2.5 V vs Ag+/Ag, to Cl-terminated Si(111) electrodes in tetrahydrofuran resulted in the complete elimination of Cl, as measured by XPS. The data are consistent with a mechanism in which the reaction of alkyl Grignard reagents with the Cl-terminated Si(111) surfaces involves electron transfer from the Grignard reagent to the Si, loss of chloride to solution, and subsequent reaction between the resultant silicon radical and alkyl radical to form a silicon-carbon bond. Sites sterically hindered by neighboring alkyl groups abstract a H atom to produce Si - H bonds on the surface.

Original languageEnglish
Pages (from-to)14800-14808
Number of pages9
JournalJournal of Physical Chemistry B
Issue number30
Publication statusPublished - Aug 3 2006

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Chemical and electrical passivation of silicon (111) surfaces through functionalization with sterically hindered alkyl groups'. Together they form a unique fingerprint.

Cite this