Chemistry-Inspired Adaptable Framework Structures

Research output: Contribution to journalArticle

95 Citations (Scopus)

Abstract

ConspectusAdaptable crystalline frameworks are important in modern solid-state chemistry as they are able to accommodate a wide range of elements, oxidation states, and stoichiometries. Owing to this ability, such adaptable framework structures are emerging as the prototypes for technologically important advanced functional materials. In this Account, the idea of cosubstitution is explored as a useful "pairing" concept that can potentially lead to the creation of many new members of one particular framework structure. Cosubstitution as practiced is the simultaneous replacement of two or more cations, anions, complex anions, other fundamental building units, or vacancies. Although the overall sum of the oxidation states is constant, each component is not necessarily isovalent. This methodology is typically inspired by either mineral-type structural prototypes found in nature or those discovered in the laboratory. Either path leads to the appearance of new phases and the discovery of new materials. In addition, the chemical cosubstitution approach can be successfully adopted to improve physical properties associated with structures.This Account is structured as follows: first, we illustrate the significance and background of chemical cosubstitution by reviewing mineral-inspired structures, such as perovskite and lyonsite, and the structural unit discovered in some selected solid state compounds. With time, the number of lyonsite related phases should rival or even surpass the perovskite family. Several members of the lyonsite-type have been identified as Li-ion conductors and photocatalysts. There is also a noncentrosymmetric structure-type, and therefore the other properties associated with the loss of inversion symmetry should be anticipated. Next, we illustrate recent advances in the synthesis of the new cosubstituted solid state materials from our two groups including (1) nonlinear optical materials, (2) luminescent materials, (3) transparent conducting oxides, and (4) photocatalyst and photovoltaic materials. We emphasize that a concerted and rigorous theoretical and experimental approach will be required to define thermodynamic stability of the complex cosubstitution chemistries, structures, and properties that are yet unknown. We conclude by summarizing the topic and suggesting other possible adaptable framework structures where cosubstitution can be expected.

Original languageEnglish
Pages (from-to)1222-1230
Number of pages9
JournalAccounts of Chemical Research
Volume50
Issue number5
DOIs
Publication statusPublished - May 16 2017

Fingerprint

Photocatalysts
Anions
Minerals
Oxidation
Functional materials
Optical materials
Stoichiometry
Oxides
Vacancies
Cations
Thermodynamic stability
Physical properties
Ions
Crystalline materials
perovskite

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Chemistry-Inspired Adaptable Framework Structures. / Xia, Zhiguo; Poeppelmeier, Kenneth R.

In: Accounts of Chemical Research, Vol. 50, No. 5, 16.05.2017, p. 1222-1230.

Research output: Contribution to journalArticle

@article{b50b91bb15724888970366d0dbb3dc76,
title = "Chemistry-Inspired Adaptable Framework Structures",
abstract = "ConspectusAdaptable crystalline frameworks are important in modern solid-state chemistry as they are able to accommodate a wide range of elements, oxidation states, and stoichiometries. Owing to this ability, such adaptable framework structures are emerging as the prototypes for technologically important advanced functional materials. In this Account, the idea of cosubstitution is explored as a useful {"}pairing{"} concept that can potentially lead to the creation of many new members of one particular framework structure. Cosubstitution as practiced is the simultaneous replacement of two or more cations, anions, complex anions, other fundamental building units, or vacancies. Although the overall sum of the oxidation states is constant, each component is not necessarily isovalent. This methodology is typically inspired by either mineral-type structural prototypes found in nature or those discovered in the laboratory. Either path leads to the appearance of new phases and the discovery of new materials. In addition, the chemical cosubstitution approach can be successfully adopted to improve physical properties associated with structures.This Account is structured as follows: first, we illustrate the significance and background of chemical cosubstitution by reviewing mineral-inspired structures, such as perovskite and lyonsite, and the structural unit discovered in some selected solid state compounds. With time, the number of lyonsite related phases should rival or even surpass the perovskite family. Several members of the lyonsite-type have been identified as Li-ion conductors and photocatalysts. There is also a noncentrosymmetric structure-type, and therefore the other properties associated with the loss of inversion symmetry should be anticipated. Next, we illustrate recent advances in the synthesis of the new cosubstituted solid state materials from our two groups including (1) nonlinear optical materials, (2) luminescent materials, (3) transparent conducting oxides, and (4) photocatalyst and photovoltaic materials. We emphasize that a concerted and rigorous theoretical and experimental approach will be required to define thermodynamic stability of the complex cosubstitution chemistries, structures, and properties that are yet unknown. We conclude by summarizing the topic and suggesting other possible adaptable framework structures where cosubstitution can be expected.",
author = "Zhiguo Xia and Poeppelmeier, {Kenneth R}",
year = "2017",
month = "5",
day = "16",
doi = "10.1021/acs.accounts.7b00033",
language = "English",
volume = "50",
pages = "1222--1230",
journal = "Accounts of Chemical Research",
issn = "0001-4842",
publisher = "American Chemical Society",
number = "5",

}

TY - JOUR

T1 - Chemistry-Inspired Adaptable Framework Structures

AU - Xia, Zhiguo

AU - Poeppelmeier, Kenneth R

PY - 2017/5/16

Y1 - 2017/5/16

N2 - ConspectusAdaptable crystalline frameworks are important in modern solid-state chemistry as they are able to accommodate a wide range of elements, oxidation states, and stoichiometries. Owing to this ability, such adaptable framework structures are emerging as the prototypes for technologically important advanced functional materials. In this Account, the idea of cosubstitution is explored as a useful "pairing" concept that can potentially lead to the creation of many new members of one particular framework structure. Cosubstitution as practiced is the simultaneous replacement of two or more cations, anions, complex anions, other fundamental building units, or vacancies. Although the overall sum of the oxidation states is constant, each component is not necessarily isovalent. This methodology is typically inspired by either mineral-type structural prototypes found in nature or those discovered in the laboratory. Either path leads to the appearance of new phases and the discovery of new materials. In addition, the chemical cosubstitution approach can be successfully adopted to improve physical properties associated with structures.This Account is structured as follows: first, we illustrate the significance and background of chemical cosubstitution by reviewing mineral-inspired structures, such as perovskite and lyonsite, and the structural unit discovered in some selected solid state compounds. With time, the number of lyonsite related phases should rival or even surpass the perovskite family. Several members of the lyonsite-type have been identified as Li-ion conductors and photocatalysts. There is also a noncentrosymmetric structure-type, and therefore the other properties associated with the loss of inversion symmetry should be anticipated. Next, we illustrate recent advances in the synthesis of the new cosubstituted solid state materials from our two groups including (1) nonlinear optical materials, (2) luminescent materials, (3) transparent conducting oxides, and (4) photocatalyst and photovoltaic materials. We emphasize that a concerted and rigorous theoretical and experimental approach will be required to define thermodynamic stability of the complex cosubstitution chemistries, structures, and properties that are yet unknown. We conclude by summarizing the topic and suggesting other possible adaptable framework structures where cosubstitution can be expected.

AB - ConspectusAdaptable crystalline frameworks are important in modern solid-state chemistry as they are able to accommodate a wide range of elements, oxidation states, and stoichiometries. Owing to this ability, such adaptable framework structures are emerging as the prototypes for technologically important advanced functional materials. In this Account, the idea of cosubstitution is explored as a useful "pairing" concept that can potentially lead to the creation of many new members of one particular framework structure. Cosubstitution as practiced is the simultaneous replacement of two or more cations, anions, complex anions, other fundamental building units, or vacancies. Although the overall sum of the oxidation states is constant, each component is not necessarily isovalent. This methodology is typically inspired by either mineral-type structural prototypes found in nature or those discovered in the laboratory. Either path leads to the appearance of new phases and the discovery of new materials. In addition, the chemical cosubstitution approach can be successfully adopted to improve physical properties associated with structures.This Account is structured as follows: first, we illustrate the significance and background of chemical cosubstitution by reviewing mineral-inspired structures, such as perovskite and lyonsite, and the structural unit discovered in some selected solid state compounds. With time, the number of lyonsite related phases should rival or even surpass the perovskite family. Several members of the lyonsite-type have been identified as Li-ion conductors and photocatalysts. There is also a noncentrosymmetric structure-type, and therefore the other properties associated with the loss of inversion symmetry should be anticipated. Next, we illustrate recent advances in the synthesis of the new cosubstituted solid state materials from our two groups including (1) nonlinear optical materials, (2) luminescent materials, (3) transparent conducting oxides, and (4) photocatalyst and photovoltaic materials. We emphasize that a concerted and rigorous theoretical and experimental approach will be required to define thermodynamic stability of the complex cosubstitution chemistries, structures, and properties that are yet unknown. We conclude by summarizing the topic and suggesting other possible adaptable framework structures where cosubstitution can be expected.

UR - http://www.scopus.com/inward/record.url?scp=85019462541&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85019462541&partnerID=8YFLogxK

U2 - 10.1021/acs.accounts.7b00033

DO - 10.1021/acs.accounts.7b00033

M3 - Article

C2 - 28441014

AN - SCOPUS:85019462541

VL - 50

SP - 1222

EP - 1230

JO - Accounts of Chemical Research

JF - Accounts of Chemical Research

SN - 0001-4842

IS - 5

ER -