Comparison of the one-electron oxidations of CO-bridged vs unbridged bimetallic complexes

Electron-transfer chemistry of Os2Cp2(CO)4 and Os2Cp2(μ-CO)2(CO)2 (Cp = η5-C5H5, Cp = η5-C5Me5)

Derek R. Laws, R Morris Bullock, Richmond Lee, Kuo Wei Huang, William E. Geiger

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The one-electron oxidations of two dimers of half-sandwich osmium carbonyl complexes have been examined by electrochemistry, spectro-electrochemistry, and computational methods. The all-terminal carbonyl complex Os2Cp2(CO)4 (1, Cp = η5-C5H5) undergoes a reversible one-electron anodic reaction at E1/2 = 0.41 V vs ferrocene in CH2Cl2/0.05 M [NBu4][B(C6F5)4], giving a rare example of a metal-metal bonded radical cation unsupported by bridging ligands. The IR spectrum of 1+ is consistent with an approximately 1:1 mixture of anti and gauche structures for the 33 e- radical cation in which it has retained all-terminal bonding of the CO ligands. Density functional theory (DFT) calculations, including orbital-occupancy-perturbed Mayer bond-order analyses, show that the highest-occupied molecular orbitals (HOMOs) of anti-1 and gauche-1 are metal-ligand delocalized. Removal of an electron from 1 has very little effect on the Os-Os bond order, accounting for the resistance of 1+ to heterolytic cleavage. The Os-Os bond distance is calculated to decrease by 0.10 å and 0.06 å as a consequence of one-electron oxidation of anti-1 and gauche-1, respectively. The CO-bridged complex Os2Cp2(μ-CO)2(CO)2 (Cp = η5-C5Me5), trans-2, undergoes a more facile oxidation, E1/2 = -0.11 V, giving a persistent radical cation shown by solution IR analysis to preserve its bridged-carbonyl structure. However, ESR analysis of frozen solutions of 2+ is interpreted in terms of the presence of two isomers, most likely anti-2+ and trans-2+, at low temperature. Calculations show that the HOMO of trans-2 is highly delocalized over the metal-ligand framework, with the bridging carbonyls accounting for about half of the orbital makeup. The Os-Os bond order again changes very little with removal of an electron, and the Os-Os bond length actually undergoes minor shortening. Calculations suggest that the second isomer of 2+ has the anti all-terminal CO structure. (Figure Presented)

Original languageEnglish
Pages (from-to)4716-4728
Number of pages13
JournalOrganometallics
Volume33
Issue number18
DOIs
Publication statusPublished - Sep 22 2014

Fingerprint

electron transfer
chemistry
Oxidation
oxidation
Metals
Electrons
Ligands
Cations
ligands
Molecular orbitals
electrochemistry
electrons
cations
Isomers
metals
molecular orbitals
isomers
Spectroelectrochemistry
Osmium
orbitals

ASJC Scopus subject areas

  • Organic Chemistry
  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Cite this

Comparison of the one-electron oxidations of CO-bridged vs unbridged bimetallic complexes : Electron-transfer chemistry of Os2Cp2(CO)4 and Os2Cp2(μ-CO)2(CO)2 (Cp = η5-C5H5, Cp = η5-C5Me5). / Laws, Derek R.; Bullock, R Morris; Lee, Richmond; Huang, Kuo Wei; Geiger, William E.

In: Organometallics, Vol. 33, No. 18, 22.09.2014, p. 4716-4728.

Research output: Contribution to journalArticle

@article{1e5579fca06f4141b05250d01b79f983,
title = "Comparison of the one-electron oxidations of CO-bridged vs unbridged bimetallic complexes: Electron-transfer chemistry of Os2Cp2(CO)4 and Os2Cp∗2(μ-CO)2(CO)2 (Cp = η5-C5H5, Cp∗ = η5-C5Me5)",
abstract = "The one-electron oxidations of two dimers of half-sandwich osmium carbonyl complexes have been examined by electrochemistry, spectro-electrochemistry, and computational methods. The all-terminal carbonyl complex Os2Cp2(CO)4 (1, Cp = η5-C5H5) undergoes a reversible one-electron anodic reaction at E1/2 = 0.41 V vs ferrocene in CH2Cl2/0.05 M [NBu4][B(C6F5)4], giving a rare example of a metal-metal bonded radical cation unsupported by bridging ligands. The IR spectrum of 1+ is consistent with an approximately 1:1 mixture of anti and gauche structures for the 33 e- radical cation in which it has retained all-terminal bonding of the CO ligands. Density functional theory (DFT) calculations, including orbital-occupancy-perturbed Mayer bond-order analyses, show that the highest-occupied molecular orbitals (HOMOs) of anti-1 and gauche-1 are metal-ligand delocalized. Removal of an electron from 1 has very little effect on the Os-Os bond order, accounting for the resistance of 1+ to heterolytic cleavage. The Os-Os bond distance is calculated to decrease by 0.10 {\aa} and 0.06 {\aa} as a consequence of one-electron oxidation of anti-1 and gauche-1, respectively. The CO-bridged complex Os2Cp∗2(μ-CO)2(CO)2 (Cp∗ = η5-C5Me5), trans-2, undergoes a more facile oxidation, E1/2 = -0.11 V, giving a persistent radical cation shown by solution IR analysis to preserve its bridged-carbonyl structure. However, ESR analysis of frozen solutions of 2+ is interpreted in terms of the presence of two isomers, most likely anti-2+ and trans-2+, at low temperature. Calculations show that the HOMO of trans-2 is highly delocalized over the metal-ligand framework, with the bridging carbonyls accounting for about half of the orbital makeup. The Os-Os bond order again changes very little with removal of an electron, and the Os-Os bond length actually undergoes minor shortening. Calculations suggest that the second isomer of 2+ has the anti all-terminal CO structure. (Figure Presented)",
author = "Laws, {Derek R.} and Bullock, {R Morris} and Richmond Lee and Huang, {Kuo Wei} and Geiger, {William E.}",
year = "2014",
month = "9",
day = "22",
doi = "10.1021/om401213y",
language = "English",
volume = "33",
pages = "4716--4728",
journal = "Organometallics",
issn = "0276-7333",
publisher = "American Chemical Society",
number = "18",

}

TY - JOUR

T1 - Comparison of the one-electron oxidations of CO-bridged vs unbridged bimetallic complexes

T2 - Electron-transfer chemistry of Os2Cp2(CO)4 and Os2Cp∗2(μ-CO)2(CO)2 (Cp = η5-C5H5, Cp∗ = η5-C5Me5)

AU - Laws, Derek R.

AU - Bullock, R Morris

AU - Lee, Richmond

AU - Huang, Kuo Wei

AU - Geiger, William E.

PY - 2014/9/22

Y1 - 2014/9/22

N2 - The one-electron oxidations of two dimers of half-sandwich osmium carbonyl complexes have been examined by electrochemistry, spectro-electrochemistry, and computational methods. The all-terminal carbonyl complex Os2Cp2(CO)4 (1, Cp = η5-C5H5) undergoes a reversible one-electron anodic reaction at E1/2 = 0.41 V vs ferrocene in CH2Cl2/0.05 M [NBu4][B(C6F5)4], giving a rare example of a metal-metal bonded radical cation unsupported by bridging ligands. The IR spectrum of 1+ is consistent with an approximately 1:1 mixture of anti and gauche structures for the 33 e- radical cation in which it has retained all-terminal bonding of the CO ligands. Density functional theory (DFT) calculations, including orbital-occupancy-perturbed Mayer bond-order analyses, show that the highest-occupied molecular orbitals (HOMOs) of anti-1 and gauche-1 are metal-ligand delocalized. Removal of an electron from 1 has very little effect on the Os-Os bond order, accounting for the resistance of 1+ to heterolytic cleavage. The Os-Os bond distance is calculated to decrease by 0.10 å and 0.06 å as a consequence of one-electron oxidation of anti-1 and gauche-1, respectively. The CO-bridged complex Os2Cp∗2(μ-CO)2(CO)2 (Cp∗ = η5-C5Me5), trans-2, undergoes a more facile oxidation, E1/2 = -0.11 V, giving a persistent radical cation shown by solution IR analysis to preserve its bridged-carbonyl structure. However, ESR analysis of frozen solutions of 2+ is interpreted in terms of the presence of two isomers, most likely anti-2+ and trans-2+, at low temperature. Calculations show that the HOMO of trans-2 is highly delocalized over the metal-ligand framework, with the bridging carbonyls accounting for about half of the orbital makeup. The Os-Os bond order again changes very little with removal of an electron, and the Os-Os bond length actually undergoes minor shortening. Calculations suggest that the second isomer of 2+ has the anti all-terminal CO structure. (Figure Presented)

AB - The one-electron oxidations of two dimers of half-sandwich osmium carbonyl complexes have been examined by electrochemistry, spectro-electrochemistry, and computational methods. The all-terminal carbonyl complex Os2Cp2(CO)4 (1, Cp = η5-C5H5) undergoes a reversible one-electron anodic reaction at E1/2 = 0.41 V vs ferrocene in CH2Cl2/0.05 M [NBu4][B(C6F5)4], giving a rare example of a metal-metal bonded radical cation unsupported by bridging ligands. The IR spectrum of 1+ is consistent with an approximately 1:1 mixture of anti and gauche structures for the 33 e- radical cation in which it has retained all-terminal bonding of the CO ligands. Density functional theory (DFT) calculations, including orbital-occupancy-perturbed Mayer bond-order analyses, show that the highest-occupied molecular orbitals (HOMOs) of anti-1 and gauche-1 are metal-ligand delocalized. Removal of an electron from 1 has very little effect on the Os-Os bond order, accounting for the resistance of 1+ to heterolytic cleavage. The Os-Os bond distance is calculated to decrease by 0.10 å and 0.06 å as a consequence of one-electron oxidation of anti-1 and gauche-1, respectively. The CO-bridged complex Os2Cp∗2(μ-CO)2(CO)2 (Cp∗ = η5-C5Me5), trans-2, undergoes a more facile oxidation, E1/2 = -0.11 V, giving a persistent radical cation shown by solution IR analysis to preserve its bridged-carbonyl structure. However, ESR analysis of frozen solutions of 2+ is interpreted in terms of the presence of two isomers, most likely anti-2+ and trans-2+, at low temperature. Calculations show that the HOMO of trans-2 is highly delocalized over the metal-ligand framework, with the bridging carbonyls accounting for about half of the orbital makeup. The Os-Os bond order again changes very little with removal of an electron, and the Os-Os bond length actually undergoes minor shortening. Calculations suggest that the second isomer of 2+ has the anti all-terminal CO structure. (Figure Presented)

UR - http://www.scopus.com/inward/record.url?scp=84927633387&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84927633387&partnerID=8YFLogxK

U2 - 10.1021/om401213y

DO - 10.1021/om401213y

M3 - Article

VL - 33

SP - 4716

EP - 4728

JO - Organometallics

JF - Organometallics

SN - 0276-7333

IS - 18

ER -