Compositional and structural modifications in ternary bismuth chalcogenides and their thermoelectric properties

D. Y. Chung, M. A. Lane, J. R. Ireland, P. W. Brazis, C. R. Kannewurf, M. G. Kanatzidis

Research output: Contribution to journalConference article

1 Citation (Scopus)

Abstract

Based on the versatile combination of PbQ- and Bi2Q3-type (Q = S, Se, Te) fragments, we explored new compounds in the Pb/Bi/Se ternary system. The new class of compounds, Pb5Bi6Se14, Pb5Pb12Se23, and PbBi8Se13 are homologues with different combination of alternating Bi2Se3- and PbSe-type layers. α- and β-Pb6Bi2Se9 were obtained in different synthetic conditions and the former is isostructural to heyrovskyite (Pb6Bi2S9) while the latter is a NaCl-type cubic phase. Pb5Bi6Se14 shows a power factor of 11.2 μW/cm·K2 with electrical conductivity of 657 S/cm and thermopower of -131 μV/K at 271 K. The most significant characteristic of this material is the extremely low thermal conductivity of less than 1.0 W/m·K at room temperature. On the basis of these properties, a preliminary doping study for Pb5Bi6Se14 with Sn, Sb, and SbBr3 as dopants was undertaken and the results are presented in this report.

Original languageEnglish
Pages (from-to)Z741-Z746
JournalProceedings - IEEE International Symposium on Circuits and Systems
Volume4
Publication statusPublished - Jan 1 2001
EventIEEE International Symposium on Circuits and Systems (ISCAS 2001) - Sydney, NSW, Australia
Duration: May 6 2001May 9 2001

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Compositional and structural modifications in ternary bismuth chalcogenides and their thermoelectric properties'. Together they form a unique fingerprint.

  • Cite this