Comprehensive thermodynamics of nickel hydride bis(diphosphine) complexes

A predictive model through computations

Research output: Contribution to journalArticle

56 Citations (Scopus)

Abstract

Prediction of thermodynamic quantities such as redox potentials and homolytic and heterolytic metal hydrogen bond energies is critical to the a priori design of molecular catalysts. In this paper we expound upon a density functional theory (DFT)-based isodesmic methodology for the accurate computation of the above quantities across a series of Ni(diphosphine)2 complexes that are potential catalysts for production of H2 from protons and electrons or oxidation of H2 to electrons and protons. Isodesmic schemes give relative free energies between the complex of interest and a reference system. A natural choice is to use as a reference a compound that is similar to the chemical species under study and for which the properties of interest have been measured with accuracy. However, this is not always possible, as in the case of the Ni complexes considered here, where data are experimentally available for only some species. To overcome this difficulty, we employed a theoretical reference compound, Ni(PH3)4, which is amenable to highly accurate electron-correlated calculations, which allows one to explore thermodynamic properties even when no experimental input is accessible. The reliability of this reference is validated against the available thermodynamics data in acetonitrile solution. Overall the proposed protocol yields excellent accuracy for redox potentials (∼0.10 eV of accuracy), for acidities (∼1.5 pKa units of accuracy), for hydricities (∼2 kcal/mol of accuracy), and for homolytic bond dissociation free energies (∼1-2 kcal/mol of accuracy). The calculated thermodynamic properties are then analyzed for a broad set of Ni complexes. The power of the approach is demonstrated through the validation of previously reported linear correlations among properties. New correlations are revealed. It emerges that only two quantities, the Ni(II)/Ni(I) and Ni(I)/Ni(0) redox potentials (which are easily accessible experimentally), suffice to predict with high confidence the energetics of all relevant species involved in the catalytic cycles for H 2 oxidation and production. The approach could be extended to other transition metal complexes.

Original languageEnglish
Pages (from-to)6108-6118
Number of pages11
JournalOrganometallics
Volume30
Issue number22
DOIs
Publication statusPublished - Nov 28 2011

Fingerprint

Nickel
Hydrides
hydrides
nickel
Thermodynamics
thermodynamics
Free energy
Electrons
Protons
Thermodynamic properties
Oxidation
Catalysts
Coordination Complexes
Acidity
Transition metals
Density functional theory
Hydrogen bonds
thermodynamic properties
Metals
free energy

ASJC Scopus subject areas

  • Organic Chemistry
  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Cite this

@article{e0545b7717904131a26fa311060244b4,
title = "Comprehensive thermodynamics of nickel hydride bis(diphosphine) complexes: A predictive model through computations",
abstract = "Prediction of thermodynamic quantities such as redox potentials and homolytic and heterolytic metal hydrogen bond energies is critical to the a priori design of molecular catalysts. In this paper we expound upon a density functional theory (DFT)-based isodesmic methodology for the accurate computation of the above quantities across a series of Ni(diphosphine)2 complexes that are potential catalysts for production of H2 from protons and electrons or oxidation of H2 to electrons and protons. Isodesmic schemes give relative free energies between the complex of interest and a reference system. A natural choice is to use as a reference a compound that is similar to the chemical species under study and for which the properties of interest have been measured with accuracy. However, this is not always possible, as in the case of the Ni complexes considered here, where data are experimentally available for only some species. To overcome this difficulty, we employed a theoretical reference compound, Ni(PH3)4, which is amenable to highly accurate electron-correlated calculations, which allows one to explore thermodynamic properties even when no experimental input is accessible. The reliability of this reference is validated against the available thermodynamics data in acetonitrile solution. Overall the proposed protocol yields excellent accuracy for redox potentials (∼0.10 eV of accuracy), for acidities (∼1.5 pKa units of accuracy), for hydricities (∼2 kcal/mol of accuracy), and for homolytic bond dissociation free energies (∼1-2 kcal/mol of accuracy). The calculated thermodynamic properties are then analyzed for a broad set of Ni complexes. The power of the approach is demonstrated through the validation of previously reported linear correlations among properties. New correlations are revealed. It emerges that only two quantities, the Ni(II)/Ni(I) and Ni(I)/Ni(0) redox potentials (which are easily accessible experimentally), suffice to predict with high confidence the energetics of all relevant species involved in the catalytic cycles for H 2 oxidation and production. The approach could be extended to other transition metal complexes.",
author = "Shentan Chen and Roger Rousseau and Simone Raugei and Michel Dupuis and DuBois, {Daniel L} and Bullock, {R Morris}",
year = "2011",
month = "11",
day = "28",
doi = "10.1021/om200645x",
language = "English",
volume = "30",
pages = "6108--6118",
journal = "Organometallics",
issn = "0276-7333",
publisher = "American Chemical Society",
number = "22",

}

TY - JOUR

T1 - Comprehensive thermodynamics of nickel hydride bis(diphosphine) complexes

T2 - A predictive model through computations

AU - Chen, Shentan

AU - Rousseau, Roger

AU - Raugei, Simone

AU - Dupuis, Michel

AU - DuBois, Daniel L

AU - Bullock, R Morris

PY - 2011/11/28

Y1 - 2011/11/28

N2 - Prediction of thermodynamic quantities such as redox potentials and homolytic and heterolytic metal hydrogen bond energies is critical to the a priori design of molecular catalysts. In this paper we expound upon a density functional theory (DFT)-based isodesmic methodology for the accurate computation of the above quantities across a series of Ni(diphosphine)2 complexes that are potential catalysts for production of H2 from protons and electrons or oxidation of H2 to electrons and protons. Isodesmic schemes give relative free energies between the complex of interest and a reference system. A natural choice is to use as a reference a compound that is similar to the chemical species under study and for which the properties of interest have been measured with accuracy. However, this is not always possible, as in the case of the Ni complexes considered here, where data are experimentally available for only some species. To overcome this difficulty, we employed a theoretical reference compound, Ni(PH3)4, which is amenable to highly accurate electron-correlated calculations, which allows one to explore thermodynamic properties even when no experimental input is accessible. The reliability of this reference is validated against the available thermodynamics data in acetonitrile solution. Overall the proposed protocol yields excellent accuracy for redox potentials (∼0.10 eV of accuracy), for acidities (∼1.5 pKa units of accuracy), for hydricities (∼2 kcal/mol of accuracy), and for homolytic bond dissociation free energies (∼1-2 kcal/mol of accuracy). The calculated thermodynamic properties are then analyzed for a broad set of Ni complexes. The power of the approach is demonstrated through the validation of previously reported linear correlations among properties. New correlations are revealed. It emerges that only two quantities, the Ni(II)/Ni(I) and Ni(I)/Ni(0) redox potentials (which are easily accessible experimentally), suffice to predict with high confidence the energetics of all relevant species involved in the catalytic cycles for H 2 oxidation and production. The approach could be extended to other transition metal complexes.

AB - Prediction of thermodynamic quantities such as redox potentials and homolytic and heterolytic metal hydrogen bond energies is critical to the a priori design of molecular catalysts. In this paper we expound upon a density functional theory (DFT)-based isodesmic methodology for the accurate computation of the above quantities across a series of Ni(diphosphine)2 complexes that are potential catalysts for production of H2 from protons and electrons or oxidation of H2 to electrons and protons. Isodesmic schemes give relative free energies between the complex of interest and a reference system. A natural choice is to use as a reference a compound that is similar to the chemical species under study and for which the properties of interest have been measured with accuracy. However, this is not always possible, as in the case of the Ni complexes considered here, where data are experimentally available for only some species. To overcome this difficulty, we employed a theoretical reference compound, Ni(PH3)4, which is amenable to highly accurate electron-correlated calculations, which allows one to explore thermodynamic properties even when no experimental input is accessible. The reliability of this reference is validated against the available thermodynamics data in acetonitrile solution. Overall the proposed protocol yields excellent accuracy for redox potentials (∼0.10 eV of accuracy), for acidities (∼1.5 pKa units of accuracy), for hydricities (∼2 kcal/mol of accuracy), and for homolytic bond dissociation free energies (∼1-2 kcal/mol of accuracy). The calculated thermodynamic properties are then analyzed for a broad set of Ni complexes. The power of the approach is demonstrated through the validation of previously reported linear correlations among properties. New correlations are revealed. It emerges that only two quantities, the Ni(II)/Ni(I) and Ni(I)/Ni(0) redox potentials (which are easily accessible experimentally), suffice to predict with high confidence the energetics of all relevant species involved in the catalytic cycles for H 2 oxidation and production. The approach could be extended to other transition metal complexes.

UR - http://www.scopus.com/inward/record.url?scp=81755182740&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=81755182740&partnerID=8YFLogxK

U2 - 10.1021/om200645x

DO - 10.1021/om200645x

M3 - Article

VL - 30

SP - 6108

EP - 6118

JO - Organometallics

JF - Organometallics

SN - 0276-7333

IS - 22

ER -