Computational and experimental study of the interactions between ionic liquids and volatile organic compounds

Tingting Gao, Jean M. Andino, J. Raul Alvarez-Idaboy

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

Computational chemistry calculations were performed to investigate the interactions of ionic liquids with different classes of volatile organic compounds (VOCs), including alcohols, aldehydes, ketones, alkanes, alkenes, alkynes and aromatic compounds. At least one VOC was studied to represent each class. Initially, 1-butyl-3-methylimindazolium chloride (abbreviated as C 4mimCl) was used as the test ionic liquid compound. Calculated interaction lengths between atoms in the ionic liquid and the VOC tested as well as thermodynamic data suggest that C4mimCl preferentially interacts with alcohols as compared to other classes of volatile organic compounds. The interactions of methanol with different kinds of ionic liquids, specifically 1-butyl-3-methylimidazolium bromine (C4mimBr) and 1-butyl-3-methylimidazolium tetrafluoroborate (C4mimBF4) were also studied. In comparing C4mimCl, C4mimBr, and C4mimBF4, the computational results suggest that C 4mimCl is more likely to interact with methanol. Laboratory experiments were performed to provide further evidence for the interaction between C4mimCl and different classes of VOCs. Fourier transform infrared spectroscopy was used to probe the ionic liquid surface before and after exposure to the VOCs that were tested. New spectral features were detected after exposure of C4mimCl to various alcohols. The new features are characteristic of the alcohols tested. No new IR features were detected after exposure of the C4mimCl to the aldehyde, ketone, alkane, alkene, alkyne or aromatic compounds studied. In addition, after exposing the C 4mimCl to a multi-component mixture of various classes of compounds (including an alcohol), the only new peaks that were detected were characteristic of the alcohol that was tested. These experimental results demonstrated that C4mimCl is selective to alcohols, even in complex mixtures. The findings in this work provide information for future gas-phase alcohol sensor design.

Original languageEnglish
Pages (from-to)9830-9838
Number of pages9
JournalPhysical Chemistry Chemical Physics
Volume12
Issue number33
DOIs
Publication statusPublished - Sep 7 2010

Fingerprint

Ionic Liquids
Volatile Organic Compounds
volatile organic compounds
alcohols
Alcohols
liquids
interactions
Alkanes
Alkynes
aromatic compounds
Aromatic compounds
Alkenes
alkynes
Ketones
aldehydes
Aldehydes
ketones
alkanes
alkenes
Methanol

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Physics and Astronomy(all)

Cite this

Computational and experimental study of the interactions between ionic liquids and volatile organic compounds. / Gao, Tingting; Andino, Jean M.; Alvarez-Idaboy, J. Raul.

In: Physical Chemistry Chemical Physics, Vol. 12, No. 33, 07.09.2010, p. 9830-9838.

Research output: Contribution to journalArticle

@article{7cb2e375eea14e5d8acdd270c94ba701,
title = "Computational and experimental study of the interactions between ionic liquids and volatile organic compounds",
abstract = "Computational chemistry calculations were performed to investigate the interactions of ionic liquids with different classes of volatile organic compounds (VOCs), including alcohols, aldehydes, ketones, alkanes, alkenes, alkynes and aromatic compounds. At least one VOC was studied to represent each class. Initially, 1-butyl-3-methylimindazolium chloride (abbreviated as C 4mimCl) was used as the test ionic liquid compound. Calculated interaction lengths between atoms in the ionic liquid and the VOC tested as well as thermodynamic data suggest that C4mimCl preferentially interacts with alcohols as compared to other classes of volatile organic compounds. The interactions of methanol with different kinds of ionic liquids, specifically 1-butyl-3-methylimidazolium bromine (C4mimBr) and 1-butyl-3-methylimidazolium tetrafluoroborate (C4mimBF4) were also studied. In comparing C4mimCl, C4mimBr, and C4mimBF4, the computational results suggest that C 4mimCl is more likely to interact with methanol. Laboratory experiments were performed to provide further evidence for the interaction between C4mimCl and different classes of VOCs. Fourier transform infrared spectroscopy was used to probe the ionic liquid surface before and after exposure to the VOCs that were tested. New spectral features were detected after exposure of C4mimCl to various alcohols. The new features are characteristic of the alcohols tested. No new IR features were detected after exposure of the C4mimCl to the aldehyde, ketone, alkane, alkene, alkyne or aromatic compounds studied. In addition, after exposing the C 4mimCl to a multi-component mixture of various classes of compounds (including an alcohol), the only new peaks that were detected were characteristic of the alcohol that was tested. These experimental results demonstrated that C4mimCl is selective to alcohols, even in complex mixtures. The findings in this work provide information for future gas-phase alcohol sensor design.",
author = "Tingting Gao and Andino, {Jean M.} and Alvarez-Idaboy, {J. Raul}",
year = "2010",
month = "9",
day = "7",
doi = "10.1039/c003386c",
language = "English",
volume = "12",
pages = "9830--9838",
journal = "Physical Chemistry Chemical Physics",
issn = "1463-9076",
publisher = "Royal Society of Chemistry",
number = "33",

}

TY - JOUR

T1 - Computational and experimental study of the interactions between ionic liquids and volatile organic compounds

AU - Gao, Tingting

AU - Andino, Jean M.

AU - Alvarez-Idaboy, J. Raul

PY - 2010/9/7

Y1 - 2010/9/7

N2 - Computational chemistry calculations were performed to investigate the interactions of ionic liquids with different classes of volatile organic compounds (VOCs), including alcohols, aldehydes, ketones, alkanes, alkenes, alkynes and aromatic compounds. At least one VOC was studied to represent each class. Initially, 1-butyl-3-methylimindazolium chloride (abbreviated as C 4mimCl) was used as the test ionic liquid compound. Calculated interaction lengths between atoms in the ionic liquid and the VOC tested as well as thermodynamic data suggest that C4mimCl preferentially interacts with alcohols as compared to other classes of volatile organic compounds. The interactions of methanol with different kinds of ionic liquids, specifically 1-butyl-3-methylimidazolium bromine (C4mimBr) and 1-butyl-3-methylimidazolium tetrafluoroborate (C4mimBF4) were also studied. In comparing C4mimCl, C4mimBr, and C4mimBF4, the computational results suggest that C 4mimCl is more likely to interact with methanol. Laboratory experiments were performed to provide further evidence for the interaction between C4mimCl and different classes of VOCs. Fourier transform infrared spectroscopy was used to probe the ionic liquid surface before and after exposure to the VOCs that were tested. New spectral features were detected after exposure of C4mimCl to various alcohols. The new features are characteristic of the alcohols tested. No new IR features were detected after exposure of the C4mimCl to the aldehyde, ketone, alkane, alkene, alkyne or aromatic compounds studied. In addition, after exposing the C 4mimCl to a multi-component mixture of various classes of compounds (including an alcohol), the only new peaks that were detected were characteristic of the alcohol that was tested. These experimental results demonstrated that C4mimCl is selective to alcohols, even in complex mixtures. The findings in this work provide information for future gas-phase alcohol sensor design.

AB - Computational chemistry calculations were performed to investigate the interactions of ionic liquids with different classes of volatile organic compounds (VOCs), including alcohols, aldehydes, ketones, alkanes, alkenes, alkynes and aromatic compounds. At least one VOC was studied to represent each class. Initially, 1-butyl-3-methylimindazolium chloride (abbreviated as C 4mimCl) was used as the test ionic liquid compound. Calculated interaction lengths between atoms in the ionic liquid and the VOC tested as well as thermodynamic data suggest that C4mimCl preferentially interacts with alcohols as compared to other classes of volatile organic compounds. The interactions of methanol with different kinds of ionic liquids, specifically 1-butyl-3-methylimidazolium bromine (C4mimBr) and 1-butyl-3-methylimidazolium tetrafluoroborate (C4mimBF4) were also studied. In comparing C4mimCl, C4mimBr, and C4mimBF4, the computational results suggest that C 4mimCl is more likely to interact with methanol. Laboratory experiments were performed to provide further evidence for the interaction between C4mimCl and different classes of VOCs. Fourier transform infrared spectroscopy was used to probe the ionic liquid surface before and after exposure to the VOCs that were tested. New spectral features were detected after exposure of C4mimCl to various alcohols. The new features are characteristic of the alcohols tested. No new IR features were detected after exposure of the C4mimCl to the aldehyde, ketone, alkane, alkene, alkyne or aromatic compounds studied. In addition, after exposing the C 4mimCl to a multi-component mixture of various classes of compounds (including an alcohol), the only new peaks that were detected were characteristic of the alcohol that was tested. These experimental results demonstrated that C4mimCl is selective to alcohols, even in complex mixtures. The findings in this work provide information for future gas-phase alcohol sensor design.

UR - http://www.scopus.com/inward/record.url?scp=77955916225&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77955916225&partnerID=8YFLogxK

U2 - 10.1039/c003386c

DO - 10.1039/c003386c

M3 - Article

VL - 12

SP - 9830

EP - 9838

JO - Physical Chemistry Chemical Physics

JF - Physical Chemistry Chemical Physics

SN - 1463-9076

IS - 33

ER -