Computational Study of the Geometry and Properties of the Metcars Ti 8C12 and Mo8C12

Hua Hou, James T. Muckerman, Ping Liu, José A. Rodriguez

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

We report the results of extensive ab initio HF and post-HF (as well as DFT) studies of the "magic number" metallocarbohedrene ("metcar") clusters Ti8C12 and Mo 8C12 in various electronic states of Td symmetry and the Jahn-Teller-distorted D2d, C3v, and C1 symmetries. An essential feature of the present work is that it is a systematic study employing a hierarchy of theoretical methods to explore the effect of refining the treatment of electron correlation in determining the geometry and electronic ground state of these species. For Ti8C 12, we show using relatively high-level theories such as MP2, MP4, and QCISD that the Aufbau principle for the occupation of the molecular orbitals is obeyed, resulting in a Jahn-Teller distortion of the proposed T d symmetry. These higher-level calculations identify a D 2d structure close to Td symmetry for the electronic ground state and allow some of its chemical properties to be explored with confidence using a lower level of theory. The reactivity of Ti8C 12 toward H2O, CO, and Cl is also investigated. It is found that Ti8C12 can act as a Lewis acid to accept lone pairs of electrons from H2O (Lewis base) and that it can also be oxidized by Cl atoms through electron donation from C2 units in Ti8C12 to the Cl mediated by a Ti dz2 orbital. Thus, a relationship among structure, electronic properties, and reactivity is established. For Mo8C12, we find that the Td structure is not subject to a Jahn-Teller effect, and it is a true minimum at the HF level; B3LYP DFT calculations prefer a lower-symmetry (near-D 2) structure. The results of ab initio and DFT methods are compared.

Original languageEnglish
Pages (from-to)9344-9356
Number of pages13
JournalJournal of Physical Chemistry A
Volume107
Issue number44
DOIs
Publication statusPublished - Nov 6 2003

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Computational Study of the Geometry and Properties of the Metcars Ti <sub>8</sub>C<sub>12</sub> and Mo<sub>8</sub>C<sub>12</sub>'. Together they form a unique fingerprint.

  • Cite this