Conduction of Metal-Thin Organic Film-Metal Junctions at Low Bias

Yuri A. Berlin, Mark A Ratner

Research output: Contribution to journalReview article

Abstract

A model for the low bias electric conductance of junctions, consisting of a thin organic film (TOF) positioned between two metallic electrodes (M), has been developed. In contrast with other theoretical studies, the proposed model relies on the energy band picture of M-TOF-M systems. Theoretical analysis of the band-like transport has shown that the electronic flow between metallic electrodes can exist in M-TOF-M junctions only if injected charge carriers are able to overcome the potential barrier with the thickness-dependent height. Such an obstacle to the motion of injected charges in the TOF conduction band arises due to the bending of this band caused by carriers localized in structural traps. Two regimes of the zero bias conductance of M-TOF-M junctions have been studied theoretically for situations, where charges overcome the thickness-dependent barrier undergoing either thermally activated or tunneling transitions. Analytical expressions derived for the zero bias conduction in these two regimes enable us to specify key physical parameters controlling charge transport across the film and provide results consistent with observations. On the basis of our findings, we infer that thermally activated and tunneling conductances can be distinguished by temperature and thickness dependencies. Theoretical results obtained for the electric conductance of M-TOF-M systems in the tunneling regime are compared with those obtained for assemblies in which TOF has been replaced by a single molecule. Distinctions between transport properties of these two systems and their similarities resulting from the present model are discussed.

Original languageEnglish
Pages (from-to)7557-7563
Number of pages7
JournalJournal of Physical Chemistry C
Volume122
Issue number13
DOIs
Publication statusPublished - Apr 5 2018

Fingerprint

metal films
Metals
conduction
metals
Electric conductance
Electrodes
electrodes
Conduction bands
Charge carriers
Band structure
Transport properties
assemblies
energy bands
Charge transfer
charge carriers
conduction bands
transport properties
traps
Molecules
electronics

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Cite this

Conduction of Metal-Thin Organic Film-Metal Junctions at Low Bias. / Berlin, Yuri A.; Ratner, Mark A.

In: Journal of Physical Chemistry C, Vol. 122, No. 13, 05.04.2018, p. 7557-7563.

Research output: Contribution to journalReview article

@article{64d9aaaea62b4b459cacdd522fe3944b,
title = "Conduction of Metal-Thin Organic Film-Metal Junctions at Low Bias",
abstract = "A model for the low bias electric conductance of junctions, consisting of a thin organic film (TOF) positioned between two metallic electrodes (M), has been developed. In contrast with other theoretical studies, the proposed model relies on the energy band picture of M-TOF-M systems. Theoretical analysis of the band-like transport has shown that the electronic flow between metallic electrodes can exist in M-TOF-M junctions only if injected charge carriers are able to overcome the potential barrier with the thickness-dependent height. Such an obstacle to the motion of injected charges in the TOF conduction band arises due to the bending of this band caused by carriers localized in structural traps. Two regimes of the zero bias conductance of M-TOF-M junctions have been studied theoretically for situations, where charges overcome the thickness-dependent barrier undergoing either thermally activated or tunneling transitions. Analytical expressions derived for the zero bias conduction in these two regimes enable us to specify key physical parameters controlling charge transport across the film and provide results consistent with observations. On the basis of our findings, we infer that thermally activated and tunneling conductances can be distinguished by temperature and thickness dependencies. Theoretical results obtained for the electric conductance of M-TOF-M systems in the tunneling regime are compared with those obtained for assemblies in which TOF has been replaced by a single molecule. Distinctions between transport properties of these two systems and their similarities resulting from the present model are discussed.",
author = "Berlin, {Yuri A.} and Ratner, {Mark A}",
year = "2018",
month = "4",
day = "5",
doi = "10.1021/acs.jpcc.8b01571",
language = "English",
volume = "122",
pages = "7557--7563",
journal = "Journal of Physical Chemistry C",
issn = "1932-7447",
publisher = "American Chemical Society",
number = "13",

}

TY - JOUR

T1 - Conduction of Metal-Thin Organic Film-Metal Junctions at Low Bias

AU - Berlin, Yuri A.

AU - Ratner, Mark A

PY - 2018/4/5

Y1 - 2018/4/5

N2 - A model for the low bias electric conductance of junctions, consisting of a thin organic film (TOF) positioned between two metallic electrodes (M), has been developed. In contrast with other theoretical studies, the proposed model relies on the energy band picture of M-TOF-M systems. Theoretical analysis of the band-like transport has shown that the electronic flow between metallic electrodes can exist in M-TOF-M junctions only if injected charge carriers are able to overcome the potential barrier with the thickness-dependent height. Such an obstacle to the motion of injected charges in the TOF conduction band arises due to the bending of this band caused by carriers localized in structural traps. Two regimes of the zero bias conductance of M-TOF-M junctions have been studied theoretically for situations, where charges overcome the thickness-dependent barrier undergoing either thermally activated or tunneling transitions. Analytical expressions derived for the zero bias conduction in these two regimes enable us to specify key physical parameters controlling charge transport across the film and provide results consistent with observations. On the basis of our findings, we infer that thermally activated and tunneling conductances can be distinguished by temperature and thickness dependencies. Theoretical results obtained for the electric conductance of M-TOF-M systems in the tunneling regime are compared with those obtained for assemblies in which TOF has been replaced by a single molecule. Distinctions between transport properties of these two systems and their similarities resulting from the present model are discussed.

AB - A model for the low bias electric conductance of junctions, consisting of a thin organic film (TOF) positioned between two metallic electrodes (M), has been developed. In contrast with other theoretical studies, the proposed model relies on the energy band picture of M-TOF-M systems. Theoretical analysis of the band-like transport has shown that the electronic flow between metallic electrodes can exist in M-TOF-M junctions only if injected charge carriers are able to overcome the potential barrier with the thickness-dependent height. Such an obstacle to the motion of injected charges in the TOF conduction band arises due to the bending of this band caused by carriers localized in structural traps. Two regimes of the zero bias conductance of M-TOF-M junctions have been studied theoretically for situations, where charges overcome the thickness-dependent barrier undergoing either thermally activated or tunneling transitions. Analytical expressions derived for the zero bias conduction in these two regimes enable us to specify key physical parameters controlling charge transport across the film and provide results consistent with observations. On the basis of our findings, we infer that thermally activated and tunneling conductances can be distinguished by temperature and thickness dependencies. Theoretical results obtained for the electric conductance of M-TOF-M systems in the tunneling regime are compared with those obtained for assemblies in which TOF has been replaced by a single molecule. Distinctions between transport properties of these two systems and their similarities resulting from the present model are discussed.

UR - http://www.scopus.com/inward/record.url?scp=85045076494&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85045076494&partnerID=8YFLogxK

U2 - 10.1021/acs.jpcc.8b01571

DO - 10.1021/acs.jpcc.8b01571

M3 - Review article

AN - SCOPUS:85045076494

VL - 122

SP - 7557

EP - 7563

JO - Journal of Physical Chemistry C

JF - Journal of Physical Chemistry C

SN - 1932-7447

IS - 13

ER -