Conjugated polymer/metal nanowire heterostructure plasmonic antennas

Deirdre M O'Carroll, Carrie E. Hofmann, Harry A. Atwater

Research output: Contribution to journalArticle

57 Citations (Scopus)

Abstract

The spontaneous emission spectrum, polarization direction, and emission lifetime of monolithically coupled poly(3-hexylthiophene), P3HT, light-emitting nanostructures are modified by gold nanowlre antennas. The P3HT nanostructure is integrated onto the end of the gold nanowire antenna, where localized, longitudinal surface plasmon mode fields are strongest. Comprehensive optical characterization and theoretical modeling are employed to demonstrate plasmonic nanoantenna-mediated light emission from P3HT. Figure Presented.

Original languageEnglish
Pages (from-to)1223-1227
Number of pages5
JournalAdvanced Materials
Volume22
Issue number11
DOIs
Publication statusPublished - Mar 19 2010

Fingerprint

Conjugated polymers
Gold
Nanowires
Heterojunctions
Nanostructures
Metals
Antennas
Spontaneous emission
Light emission
Polarization
Direction compound
poly(3-hexylthiophene)
Nanoantennas

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

Conjugated polymer/metal nanowire heterostructure plasmonic antennas. / O'Carroll, Deirdre M; Hofmann, Carrie E.; Atwater, Harry A.

In: Advanced Materials, Vol. 22, No. 11, 19.03.2010, p. 1223-1227.

Research output: Contribution to journalArticle

O'Carroll, Deirdre M ; Hofmann, Carrie E. ; Atwater, Harry A. / Conjugated polymer/metal nanowire heterostructure plasmonic antennas. In: Advanced Materials. 2010 ; Vol. 22, No. 11. pp. 1223-1227.
@article{3bbafa34a9724e4b91bfc04f39546a2f,
title = "Conjugated polymer/metal nanowire heterostructure plasmonic antennas",
abstract = "The spontaneous emission spectrum, polarization direction, and emission lifetime of monolithically coupled poly(3-hexylthiophene), P3HT, light-emitting nanostructures are modified by gold nanowlre antennas. The P3HT nanostructure is integrated onto the end of the gold nanowire antenna, where localized, longitudinal surface plasmon mode fields are strongest. Comprehensive optical characterization and theoretical modeling are employed to demonstrate plasmonic nanoantenna-mediated light emission from P3HT. Figure Presented.",
author = "O'Carroll, {Deirdre M} and Hofmann, {Carrie E.} and Atwater, {Harry A.}",
year = "2010",
month = "3",
day = "19",
doi = "10.1002/adma.200902024",
language = "English",
volume = "22",
pages = "1223--1227",
journal = "Advanced Materials",
issn = "0935-9648",
publisher = "Wiley-VCH Verlag",
number = "11",

}

TY - JOUR

T1 - Conjugated polymer/metal nanowire heterostructure plasmonic antennas

AU - O'Carroll, Deirdre M

AU - Hofmann, Carrie E.

AU - Atwater, Harry A.

PY - 2010/3/19

Y1 - 2010/3/19

N2 - The spontaneous emission spectrum, polarization direction, and emission lifetime of monolithically coupled poly(3-hexylthiophene), P3HT, light-emitting nanostructures are modified by gold nanowlre antennas. The P3HT nanostructure is integrated onto the end of the gold nanowire antenna, where localized, longitudinal surface plasmon mode fields are strongest. Comprehensive optical characterization and theoretical modeling are employed to demonstrate plasmonic nanoantenna-mediated light emission from P3HT. Figure Presented.

AB - The spontaneous emission spectrum, polarization direction, and emission lifetime of monolithically coupled poly(3-hexylthiophene), P3HT, light-emitting nanostructures are modified by gold nanowlre antennas. The P3HT nanostructure is integrated onto the end of the gold nanowire antenna, where localized, longitudinal surface plasmon mode fields are strongest. Comprehensive optical characterization and theoretical modeling are employed to demonstrate plasmonic nanoantenna-mediated light emission from P3HT. Figure Presented.

UR - http://www.scopus.com/inward/record.url?scp=77950236922&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77950236922&partnerID=8YFLogxK

U2 - 10.1002/adma.200902024

DO - 10.1002/adma.200902024

M3 - Article

C2 - 20437508

AN - SCOPUS:77950236922

VL - 22

SP - 1223

EP - 1227

JO - Advanced Materials

JF - Advanced Materials

SN - 0935-9648

IS - 11

ER -