Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy

Fengjia Fan, Oleksandr Voznyy, Randy P. Sabatini, Kristopher T. Bicanic, Michael M. Adachi, James R. McBride, Kemar R. Reid, Young Shin Park, Xiyan Li, Ankit Jain, Rafael Quintero-Bermudez, Mayuran Saravanapavanantham, Min Liu, Marek Korkusinski, Pawel Hawrylak, Victor I Klimov, Sandra J. Rosenthal, Sjoerd Hoogland, Edward H. Sargent

Research output: Contribution to journalArticle

113 Citations (Scopus)

Abstract

Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material, as well as a narrow emission linewidth. Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature. This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses, limiting the gain lifetime to sub-nanoseconds and preventing steady laser action. State degeneracy also broadens the photoluminescence linewidth at the single-particle level. Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultra-narrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.

Original languageEnglish
Pages (from-to)75-79
Number of pages5
JournalNature
Volume544
Issue number7648
DOIs
Publication statusPublished - Apr 6 2017

    Fingerprint

ASJC Scopus subject areas

  • Medicine(all)
  • General

Cite this

Fan, F., Voznyy, O., Sabatini, R. P., Bicanic, K. T., Adachi, M. M., McBride, J. R., Reid, K. R., Park, Y. S., Li, X., Jain, A., Quintero-Bermudez, R., Saravanapavanantham, M., Liu, M., Korkusinski, M., Hawrylak, P., Klimov, V. I., Rosenthal, S. J., Hoogland, S., & Sargent, E. H. (2017). Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature, 544(7648), 75-79. https://doi.org/10.1038/nature21424