Control of interlayer physics in 2H transition metal dichalcogenides

Kuang Chung Wang, Teodor K. Stanev, Daniel Valencia, James Charles, Alex Henning, Vinod K. Sangwan, Aritra Lahiri, Daniel Mejia, Prasad Sarangapani, Michael Povolotskyi, Aryan Afzalian, Jesse Maassen, Gerhard Klimeck, Mark C Hersam, Lincoln J. Lauhon, Nathaniel P. Stern, Tillmann Kubis

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

It is assessed in detail both experimentally and theoretically how the interlayer coupling of transition metal dichalcogenides controls the electronic properties of the respective devices. Gated transition metal dichalcogenide structures show electrons and holes to either localize in individual monolayers, or delocalize beyond multiple layers-depending on the balance between spin-orbit interaction and interlayer hopping. This balance depends on the layer thickness, momentum space symmetry points, and applied gate fields. The design range of this balance, the effective Fermi levels, and all relevant effective masses is analyzed in great detail. A good quantitative agreement of predictions and measurements of the quantum confined Stark effect in gated MoS2 systems unveils intralayer excitons as the major source for the observed photoluminescence.

Original languageEnglish
Article number224302
JournalJournal of Applied Physics
Volume122
Issue number22
DOIs
Publication statusPublished - Dec 14 2017

Fingerprint

interlayers
transition metals
physics
Stark effect
spin-orbit interactions
excitons
momentum
photoluminescence
symmetry
predictions
electronics
electrons

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Wang, K. C., Stanev, T. K., Valencia, D., Charles, J., Henning, A., Sangwan, V. K., ... Kubis, T. (2017). Control of interlayer physics in 2H transition metal dichalcogenides. Journal of Applied Physics, 122(22), [224302]. https://doi.org/10.1063/1.5005958

Control of interlayer physics in 2H transition metal dichalcogenides. / Wang, Kuang Chung; Stanev, Teodor K.; Valencia, Daniel; Charles, James; Henning, Alex; Sangwan, Vinod K.; Lahiri, Aritra; Mejia, Daniel; Sarangapani, Prasad; Povolotskyi, Michael; Afzalian, Aryan; Maassen, Jesse; Klimeck, Gerhard; Hersam, Mark C; Lauhon, Lincoln J.; Stern, Nathaniel P.; Kubis, Tillmann.

In: Journal of Applied Physics, Vol. 122, No. 22, 224302, 14.12.2017.

Research output: Contribution to journalArticle

Wang, KC, Stanev, TK, Valencia, D, Charles, J, Henning, A, Sangwan, VK, Lahiri, A, Mejia, D, Sarangapani, P, Povolotskyi, M, Afzalian, A, Maassen, J, Klimeck, G, Hersam, MC, Lauhon, LJ, Stern, NP & Kubis, T 2017, 'Control of interlayer physics in 2H transition metal dichalcogenides', Journal of Applied Physics, vol. 122, no. 22, 224302. https://doi.org/10.1063/1.5005958
Wang KC, Stanev TK, Valencia D, Charles J, Henning A, Sangwan VK et al. Control of interlayer physics in 2H transition metal dichalcogenides. Journal of Applied Physics. 2017 Dec 14;122(22). 224302. https://doi.org/10.1063/1.5005958
Wang, Kuang Chung ; Stanev, Teodor K. ; Valencia, Daniel ; Charles, James ; Henning, Alex ; Sangwan, Vinod K. ; Lahiri, Aritra ; Mejia, Daniel ; Sarangapani, Prasad ; Povolotskyi, Michael ; Afzalian, Aryan ; Maassen, Jesse ; Klimeck, Gerhard ; Hersam, Mark C ; Lauhon, Lincoln J. ; Stern, Nathaniel P. ; Kubis, Tillmann. / Control of interlayer physics in 2H transition metal dichalcogenides. In: Journal of Applied Physics. 2017 ; Vol. 122, No. 22.
@article{056c02c199bb4a9fbf3f42c0310ac314,
title = "Control of interlayer physics in 2H transition metal dichalcogenides",
abstract = "It is assessed in detail both experimentally and theoretically how the interlayer coupling of transition metal dichalcogenides controls the electronic properties of the respective devices. Gated transition metal dichalcogenide structures show electrons and holes to either localize in individual monolayers, or delocalize beyond multiple layers-depending on the balance between spin-orbit interaction and interlayer hopping. This balance depends on the layer thickness, momentum space symmetry points, and applied gate fields. The design range of this balance, the effective Fermi levels, and all relevant effective masses is analyzed in great detail. A good quantitative agreement of predictions and measurements of the quantum confined Stark effect in gated MoS2 systems unveils intralayer excitons as the major source for the observed photoluminescence.",
author = "Wang, {Kuang Chung} and Stanev, {Teodor K.} and Daniel Valencia and James Charles and Alex Henning and Sangwan, {Vinod K.} and Aritra Lahiri and Daniel Mejia and Prasad Sarangapani and Michael Povolotskyi and Aryan Afzalian and Jesse Maassen and Gerhard Klimeck and Hersam, {Mark C} and Lauhon, {Lincoln J.} and Stern, {Nathaniel P.} and Tillmann Kubis",
year = "2017",
month = "12",
day = "14",
doi = "10.1063/1.5005958",
language = "English",
volume = "122",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics Publising LLC",
number = "22",

}

TY - JOUR

T1 - Control of interlayer physics in 2H transition metal dichalcogenides

AU - Wang, Kuang Chung

AU - Stanev, Teodor K.

AU - Valencia, Daniel

AU - Charles, James

AU - Henning, Alex

AU - Sangwan, Vinod K.

AU - Lahiri, Aritra

AU - Mejia, Daniel

AU - Sarangapani, Prasad

AU - Povolotskyi, Michael

AU - Afzalian, Aryan

AU - Maassen, Jesse

AU - Klimeck, Gerhard

AU - Hersam, Mark C

AU - Lauhon, Lincoln J.

AU - Stern, Nathaniel P.

AU - Kubis, Tillmann

PY - 2017/12/14

Y1 - 2017/12/14

N2 - It is assessed in detail both experimentally and theoretically how the interlayer coupling of transition metal dichalcogenides controls the electronic properties of the respective devices. Gated transition metal dichalcogenide structures show electrons and holes to either localize in individual monolayers, or delocalize beyond multiple layers-depending on the balance between spin-orbit interaction and interlayer hopping. This balance depends on the layer thickness, momentum space symmetry points, and applied gate fields. The design range of this balance, the effective Fermi levels, and all relevant effective masses is analyzed in great detail. A good quantitative agreement of predictions and measurements of the quantum confined Stark effect in gated MoS2 systems unveils intralayer excitons as the major source for the observed photoluminescence.

AB - It is assessed in detail both experimentally and theoretically how the interlayer coupling of transition metal dichalcogenides controls the electronic properties of the respective devices. Gated transition metal dichalcogenide structures show electrons and holes to either localize in individual monolayers, or delocalize beyond multiple layers-depending on the balance between spin-orbit interaction and interlayer hopping. This balance depends on the layer thickness, momentum space symmetry points, and applied gate fields. The design range of this balance, the effective Fermi levels, and all relevant effective masses is analyzed in great detail. A good quantitative agreement of predictions and measurements of the quantum confined Stark effect in gated MoS2 systems unveils intralayer excitons as the major source for the observed photoluminescence.

UR - http://www.scopus.com/inward/record.url?scp=85038586252&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85038586252&partnerID=8YFLogxK

U2 - 10.1063/1.5005958

DO - 10.1063/1.5005958

M3 - Article

AN - SCOPUS:85038586252

VL - 122

JO - Journal of Applied Physics

JF - Journal of Applied Physics

SN - 0021-8979

IS - 22

M1 - 224302

ER -