TY - JOUR
T1 - Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production
AU - Brown, Katherine A.
AU - Dayal, Smita
AU - Ai, Xin
AU - Rumbles, Garry
AU - King, Paul W.
PY - 2010/7/21
Y1 - 2010/7/21
N2 - We present a study of the self-assembly, charge-transfer kinetics, and catalytic properties of hybrid complexes of CdTe nanocrystals (nc-CdTe) and Clostridium acetobutylicum [FeFe]-hydrogenase I (H2ase). Molecular assembly of nc-CdTe and H2ase was mediated by electrostatic interactions and resulted in stable, enzymatically active complexes. The assembly kinetics was monitored by nc-CdTe photoluminescence (PL) spectroscopy and exhibited first-order Langmuir adsorption behavior. PL was also used to monitor the transfer of photogenerated electrons from nc-CdTe to H 2ase. The extent to which the intramolecular electron transfer (ET) contributed to the relaxation of photoexcited nc-CdTe relative to the intrinsic radiative and nonradiative (heat dissipation and surface trapping) recombination pathways was shown by steady-state PL spectroscopy to be a function of the nc-CdTe/H2ase molar ratio. When the H2ase concentration was lower than the nc-CdTe concentration during assembly, the resulting contribution of ET to PL bleaching was enhanced, which resulted in maximal rates of H2 photoproduction. Photoproduction of H2 was also a function of the nc-CdTe PL quantum efficiency (PLQE), with higher-PLQE nanocrystals producing higher levels of H2, suggesting that photogenerated electrons are transferred to H2ase directly from core nanocrystal states rather than from surface-trap states. The duration of H 2 photoproduction was limited by the stability of nc-CdTe under the reactions conditions. A first approach to optimization with ascorbic acid present as a sacrificial donor resulted in photon-to-H2 efficiencies of 9% under monochromatic light and 1.8% under AM 1.5 white light. In summary, nc-CdTe and H2ase spontaneously assemble into complexes that upon illumination transfer photogenerated electrons from core nc-CdTe states to H2ase, with low H2ase coverages promoting optimal orientations for intramolecular ET and solar H2 production.
AB - We present a study of the self-assembly, charge-transfer kinetics, and catalytic properties of hybrid complexes of CdTe nanocrystals (nc-CdTe) and Clostridium acetobutylicum [FeFe]-hydrogenase I (H2ase). Molecular assembly of nc-CdTe and H2ase was mediated by electrostatic interactions and resulted in stable, enzymatically active complexes. The assembly kinetics was monitored by nc-CdTe photoluminescence (PL) spectroscopy and exhibited first-order Langmuir adsorption behavior. PL was also used to monitor the transfer of photogenerated electrons from nc-CdTe to H 2ase. The extent to which the intramolecular electron transfer (ET) contributed to the relaxation of photoexcited nc-CdTe relative to the intrinsic radiative and nonradiative (heat dissipation and surface trapping) recombination pathways was shown by steady-state PL spectroscopy to be a function of the nc-CdTe/H2ase molar ratio. When the H2ase concentration was lower than the nc-CdTe concentration during assembly, the resulting contribution of ET to PL bleaching was enhanced, which resulted in maximal rates of H2 photoproduction. Photoproduction of H2 was also a function of the nc-CdTe PL quantum efficiency (PLQE), with higher-PLQE nanocrystals producing higher levels of H2, suggesting that photogenerated electrons are transferred to H2ase directly from core nanocrystal states rather than from surface-trap states. The duration of H 2 photoproduction was limited by the stability of nc-CdTe under the reactions conditions. A first approach to optimization with ascorbic acid present as a sacrificial donor resulted in photon-to-H2 efficiencies of 9% under monochromatic light and 1.8% under AM 1.5 white light. In summary, nc-CdTe and H2ase spontaneously assemble into complexes that upon illumination transfer photogenerated electrons from core nc-CdTe states to H2ase, with low H2ase coverages promoting optimal orientations for intramolecular ET and solar H2 production.
UR - http://www.scopus.com/inward/record.url?scp=78349259311&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78349259311&partnerID=8YFLogxK
U2 - 10.1021/ja101031r
DO - 10.1021/ja101031r
M3 - Article
C2 - 20583755
AN - SCOPUS:78349259311
VL - 132
SP - 9672
EP - 9680
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
SN - 0002-7863
IS - 28
ER -