Convergence properties of APW wavefunctions and matrix elements

B. N. Harmon, D. D. Koelling, Arthur J Freeman

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

The convergence properties of both APW wavefunctions and various matrix elements calculated from these wavefunctions have been studied using Cu and Gd metals as examples. The authors find that s-p-like states converge much faster than d-like states in local properties (e.g. the discontinuity in slope at the muffin-tin sphere radius); surprisingly however, even the d-like states converge rapidly for integrated properties (e.g. the charge density and optical matrix elements). The authors conclude that for the materials and matrix elements studied, there is no need to utilize methods involving the matching of basis function derivatives at the APW sphere boundary; and that matrix elements can converge faster than the energy eigenvalue using the wavefunctions from the standard APW method.

Original languageEnglish
Article number009
Pages (from-to)2294-2299
Number of pages6
JournalJournal of Physics C: Solid State Physics
Volume6
Issue number14
DOIs
Publication statusPublished - 1973

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Convergence properties of APW wavefunctions and matrix elements'. Together they form a unique fingerprint.

  • Cite this