Coordinative unsaturation in chiral organolanthanides. synthetic and asymmetric catalytic mechanistic study of organoyttrium and -lutetium complexes having pseudo-meso Me2Si(η5-RC5H3)(η 5-R*C5H3) ancillary ligation

Christopher M. Haar, Charlotte L. Stern, Tobin J Marks

Research output: Contribution to journalArticle

127 Citations (Scopus)

Abstract

As established by NMR, circular dichroism, and X-ray diffraction, organolanthanide complexes of the new chelating ligand Me2Si(3-Me3SiCp)[3-(-)-menthylCp]2- (Cp = η5-C5H3) preferentially adopt a single planar chiral configuration of the asymmetric metal-ligand template. Chloro complexes (S,R)-Me2Si(Me3SiCp)[(-)-menthylCp]Ln(μ-Cl) 2Li(OEt2)2 (Ln = Y, Lu) were isolated diastereomerically pure by crystallization from diethyl ether. The unusual pseudo-meso configuration leads to a gross distortion from ideal C2v symmetry, evidenced by a significant deviation of 〈Sibridge-Lu-Li from linearity (158°). At least two additional epimers are detected in THF solution. Alkylation of the (S,R) epimers with LiCH-(SiMe3)2 proceeds with retention of configuration, affording chiral hydrocarbyl complexes in quantitative yield. In solution, the hydrocarbyls exhibit temperature-dependent conformational exchange processes in the NMR ascribable to restricted rotation about the Ln-CH-(SiMe3)2 bond. These complexes are effective precatalysts for asymmetric hydrogenation of unfunctionalized olefins and for the reductive cyclization of 1,5-dienes. The highest enantioselectivities are obtained when the Lu complex is used for hydrogenation of 2-phenyl-1-butene (45% ee) and deuteration of styrene (10% ee) and 1-pentene (30% ee). The hydrogenation of 2-phenyl-1-butene with the Y catalyst (yielding exclusively 2-phenylbutane-1,2-d2 under D2) obeys a rate law of the approximate form v = (k[olefin]1[lanthanide]1/2-[H2]1)/(K + [olefin]), suggesting rapid, operationally irreversible olefin insertion at a putative hydride, a rapid preequilibrium involving an alkyl or alkyl/hydride dimer, and turnover-limiting hydrogenolysis of an intermediate yttrium alkyl with vH2/vD2 = 2.2 ± 0.1. The apparent rate constant for 2-phenyl-1-butene hydrogenation (12(1) × 10-3 M1/2 atm-1 s-1) is ca. 1 order of magnitude lower than for chiral Me2Si(Me4C5)(3-R*Cp)Ln-based systems (R* = (-)-menthyl, (+)-neomenthyl; Ln = Y, La, Nd, Sm, Lu), principally reflecting diminished Ln-C bond hydrogenolytic reactivity.

Original languageEnglish
Pages (from-to)1765-1784
Number of pages20
JournalOrganometallics
Volume15
Issue number7
Publication statusPublished - Apr 2 1996

Fingerprint

Lutetium
lutetium
Alkenes
alkenes
Hydrogenation
hydrogenation
butenes
Hydrides
hydrides
configurations
Nuclear magnetic resonance
Ligands
Yttrium
hydrogenolysis
Lanthanoid Series Elements
Hydrogenolysis
nuclear magnetic resonance
ligands
diethyl ether
Styrene

ASJC Scopus subject areas

  • Inorganic Chemistry
  • Organic Chemistry

Cite this

@article{e1b9f7600cae4be18386da6935d3e7fe,
title = "Coordinative unsaturation in chiral organolanthanides. synthetic and asymmetric catalytic mechanistic study of organoyttrium and -lutetium complexes having pseudo-meso Me2Si(η5-RC5H3)(η 5-R*C5H3) ancillary ligation",
abstract = "As established by NMR, circular dichroism, and X-ray diffraction, organolanthanide complexes of the new chelating ligand Me2Si(3-Me3SiCp)[3-(-)-menthylCp]2- (Cp = η5-C5H3) preferentially adopt a single planar chiral configuration of the asymmetric metal-ligand template. Chloro complexes (S,R)-Me2Si(Me3SiCp)[(-)-menthylCp]Ln(μ-Cl) 2Li(OEt2)2 (Ln = Y, Lu) were isolated diastereomerically pure by crystallization from diethyl ether. The unusual pseudo-meso configuration leads to a gross distortion from ideal C2v symmetry, evidenced by a significant deviation of 〈Sibridge-Lu-Li from linearity (158°). At least two additional epimers are detected in THF solution. Alkylation of the (S,R) epimers with LiCH-(SiMe3)2 proceeds with retention of configuration, affording chiral hydrocarbyl complexes in quantitative yield. In solution, the hydrocarbyls exhibit temperature-dependent conformational exchange processes in the NMR ascribable to restricted rotation about the Ln-CH-(SiMe3)2 bond. These complexes are effective precatalysts for asymmetric hydrogenation of unfunctionalized olefins and for the reductive cyclization of 1,5-dienes. The highest enantioselectivities are obtained when the Lu complex is used for hydrogenation of 2-phenyl-1-butene (45{\%} ee) and deuteration of styrene (10{\%} ee) and 1-pentene (30{\%} ee). The hydrogenation of 2-phenyl-1-butene with the Y catalyst (yielding exclusively 2-phenylbutane-1,2-d2 under D2) obeys a rate law of the approximate form v = (k[olefin]1[lanthanide]1/2-[H2]1)/(K + [olefin]), suggesting rapid, operationally irreversible olefin insertion at a putative hydride, a rapid preequilibrium involving an alkyl or alkyl/hydride dimer, and turnover-limiting hydrogenolysis of an intermediate yttrium alkyl with vH2/vD2 = 2.2 ± 0.1. The apparent rate constant for 2-phenyl-1-butene hydrogenation (12(1) × 10-3 M1/2 atm-1 s-1) is ca. 1 order of magnitude lower than for chiral Me2Si(Me4C5)(3-R*Cp)Ln-based systems (R* = (-)-menthyl, (+)-neomenthyl; Ln = Y, La, Nd, Sm, Lu), principally reflecting diminished Ln-C bond hydrogenolytic reactivity.",
author = "Haar, {Christopher M.} and Stern, {Charlotte L.} and Marks, {Tobin J}",
year = "1996",
month = "4",
day = "2",
language = "English",
volume = "15",
pages = "1765--1784",
journal = "Organometallics",
issn = "0276-7333",
publisher = "American Chemical Society",
number = "7",

}

TY - JOUR

T1 - Coordinative unsaturation in chiral organolanthanides. synthetic and asymmetric catalytic mechanistic study of organoyttrium and -lutetium complexes having pseudo-meso Me2Si(η5-RC5H3)(η 5-R*C5H3) ancillary ligation

AU - Haar, Christopher M.

AU - Stern, Charlotte L.

AU - Marks, Tobin J

PY - 1996/4/2

Y1 - 1996/4/2

N2 - As established by NMR, circular dichroism, and X-ray diffraction, organolanthanide complexes of the new chelating ligand Me2Si(3-Me3SiCp)[3-(-)-menthylCp]2- (Cp = η5-C5H3) preferentially adopt a single planar chiral configuration of the asymmetric metal-ligand template. Chloro complexes (S,R)-Me2Si(Me3SiCp)[(-)-menthylCp]Ln(μ-Cl) 2Li(OEt2)2 (Ln = Y, Lu) were isolated diastereomerically pure by crystallization from diethyl ether. The unusual pseudo-meso configuration leads to a gross distortion from ideal C2v symmetry, evidenced by a significant deviation of 〈Sibridge-Lu-Li from linearity (158°). At least two additional epimers are detected in THF solution. Alkylation of the (S,R) epimers with LiCH-(SiMe3)2 proceeds with retention of configuration, affording chiral hydrocarbyl complexes in quantitative yield. In solution, the hydrocarbyls exhibit temperature-dependent conformational exchange processes in the NMR ascribable to restricted rotation about the Ln-CH-(SiMe3)2 bond. These complexes are effective precatalysts for asymmetric hydrogenation of unfunctionalized olefins and for the reductive cyclization of 1,5-dienes. The highest enantioselectivities are obtained when the Lu complex is used for hydrogenation of 2-phenyl-1-butene (45% ee) and deuteration of styrene (10% ee) and 1-pentene (30% ee). The hydrogenation of 2-phenyl-1-butene with the Y catalyst (yielding exclusively 2-phenylbutane-1,2-d2 under D2) obeys a rate law of the approximate form v = (k[olefin]1[lanthanide]1/2-[H2]1)/(K + [olefin]), suggesting rapid, operationally irreversible olefin insertion at a putative hydride, a rapid preequilibrium involving an alkyl or alkyl/hydride dimer, and turnover-limiting hydrogenolysis of an intermediate yttrium alkyl with vH2/vD2 = 2.2 ± 0.1. The apparent rate constant for 2-phenyl-1-butene hydrogenation (12(1) × 10-3 M1/2 atm-1 s-1) is ca. 1 order of magnitude lower than for chiral Me2Si(Me4C5)(3-R*Cp)Ln-based systems (R* = (-)-menthyl, (+)-neomenthyl; Ln = Y, La, Nd, Sm, Lu), principally reflecting diminished Ln-C bond hydrogenolytic reactivity.

AB - As established by NMR, circular dichroism, and X-ray diffraction, organolanthanide complexes of the new chelating ligand Me2Si(3-Me3SiCp)[3-(-)-menthylCp]2- (Cp = η5-C5H3) preferentially adopt a single planar chiral configuration of the asymmetric metal-ligand template. Chloro complexes (S,R)-Me2Si(Me3SiCp)[(-)-menthylCp]Ln(μ-Cl) 2Li(OEt2)2 (Ln = Y, Lu) were isolated diastereomerically pure by crystallization from diethyl ether. The unusual pseudo-meso configuration leads to a gross distortion from ideal C2v symmetry, evidenced by a significant deviation of 〈Sibridge-Lu-Li from linearity (158°). At least two additional epimers are detected in THF solution. Alkylation of the (S,R) epimers with LiCH-(SiMe3)2 proceeds with retention of configuration, affording chiral hydrocarbyl complexes in quantitative yield. In solution, the hydrocarbyls exhibit temperature-dependent conformational exchange processes in the NMR ascribable to restricted rotation about the Ln-CH-(SiMe3)2 bond. These complexes are effective precatalysts for asymmetric hydrogenation of unfunctionalized olefins and for the reductive cyclization of 1,5-dienes. The highest enantioselectivities are obtained when the Lu complex is used for hydrogenation of 2-phenyl-1-butene (45% ee) and deuteration of styrene (10% ee) and 1-pentene (30% ee). The hydrogenation of 2-phenyl-1-butene with the Y catalyst (yielding exclusively 2-phenylbutane-1,2-d2 under D2) obeys a rate law of the approximate form v = (k[olefin]1[lanthanide]1/2-[H2]1)/(K + [olefin]), suggesting rapid, operationally irreversible olefin insertion at a putative hydride, a rapid preequilibrium involving an alkyl or alkyl/hydride dimer, and turnover-limiting hydrogenolysis of an intermediate yttrium alkyl with vH2/vD2 = 2.2 ± 0.1. The apparent rate constant for 2-phenyl-1-butene hydrogenation (12(1) × 10-3 M1/2 atm-1 s-1) is ca. 1 order of magnitude lower than for chiral Me2Si(Me4C5)(3-R*Cp)Ln-based systems (R* = (-)-menthyl, (+)-neomenthyl; Ln = Y, La, Nd, Sm, Lu), principally reflecting diminished Ln-C bond hydrogenolytic reactivity.

UR - http://www.scopus.com/inward/record.url?scp=0030562964&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030562964&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0030562964

VL - 15

SP - 1765

EP - 1784

JO - Organometallics

JF - Organometallics

SN - 0276-7333

IS - 7

ER -