Abstract
Water oxidation is a required half-reaction for electrochemical water splitting. To date, the only well-established active oxygen-evolution catalysts stable under operating conditions and at rest in acidic aqueous media contain Ru or Ir, two of the scarcest non-radioactive elements on Earth. We report herein a nickel-manganese antimonate electrocatalyst with a rutile-type crystal structure that requires an initial voltammetric overpotential of 672 ± 9 mV to catalyze the oxidation of water to O2(g) at a rate corresponding to 10 mA cm-2 of current density when operated in contact with 1.0 M sulfuric acid. Under galvanostatic control, the overpotential initially rose from 670 mV but was then stable at 735 ± 10 mV for 168 h of continuous operation at 10 mA cm-2. We additionally provide an in-depth evaluation of the stability of the nickel-manganese antimonate electrocatalyst, including elemental characterization of the surface, bulk, and electrolyte before and after electrochemical operation.
Original language | English |
---|---|
Pages (from-to) | 2103-2108 |
Number of pages | 6 |
Journal | Energy and Environmental Science |
Volume | 10 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2017 |
ASJC Scopus subject areas
- Environmental Chemistry
- Renewable Energy, Sustainability and the Environment
- Nuclear Energy and Engineering
- Pollution