Differing Isomerization Kinetics of Azobenzene-Functionalized Self-Assembled Monolayers in Ambient Air and in Vacuum

Thomas Moldt, Daniel Przyrembel, Michael Schulze, Wibke Bronsch, Larissa Boie, Daniel Brete, Cornelius Gahl, Rafal Klajn, Petra Tegeder, Martin Weinelt

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)


Azobenzenealkanethiols in self-assembled monolayers (SAMs) on Au(111) exhibit reversible trans-cis photoisomerization when diluted with alkanethiol spacers. Using these mixed SAMs, we show switching of the linear optical and second-harmonic response. The effective switching of these surface optical properties relies on a reasonably large cross section and a high photoisomerization yield as well as a long lifetime of the metastable cis isomer. We quantified the switching process by X-ray absorption spectroscopy. The cross sections for the trans-cis and cis-trans photoisomerization with 365 and 455 nm light, respectively, are 1 order of magnitude smaller than in solution. In vacuum, the 365 nm photostationary state comprises 50-74% of the molecules in the cis form, limited by their rapid thermal isomerization back to the trans state. In contrast, the 455 nm photostationary state contains nearly 100% trans-azobenzene. We determined time constants for the thermal cis-trans isomerization of only a few minutes in vacuum and in a dry nitrogen atmosphere but of more than 1 day in ambient air. Our results suggest that adventitious water adsorbed on the surface of the SAM stabilizes the polar cis configuration of azobenzene under ambient conditions. The back reaction rate constants differing by 2 orders of magnitude underline the huge influence of the environment and, accordingly, its importance when comparing various experiments.

Original languageEnglish
Pages (from-to)10795-10801
Number of pages7
Issue number42
Publication statusPublished - Oct 25 2016

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Differing Isomerization Kinetics of Azobenzene-Functionalized Self-Assembled Monolayers in Ambient Air and in Vacuum'. Together they form a unique fingerprint.

Cite this