Direct single-shot phase retrieval from the diffraction pattern of separated objects

Ben Leshem, Rui Xu, Yehonatan Dallal, Jianwei Miao, Boaz Nadler, Dan Oron, Nirit Dudovich, Oren Raz

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)


The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called â € diffraction before destructionâ € experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing the phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.

Original languageEnglish
Article number10820
JournalNature communications
Publication statusPublished - Feb 22 2016

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Direct single-shot phase retrieval from the diffraction pattern of separated objects'. Together they form a unique fingerprint.

Cite this