Dynamic mean-field models with correlated modes

B. Vekhter, Mark A Ratner, R. B. Gerber

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

We discuss a generalized dynamic mean-field method combining the advantages of explicit pair correlations and of configuration interaction. The approximate dynamical method, which we call time-dependent self-consistent-field configuration interaction (TDSCF2-CI), is constructed by including N(N-1)/2 TDSCF2 configurations. In each configuration a given pair of N coupled modes is directly (not in the mean-field approach) correlated; the N(N-1)/2 configurations include all such choices of pairs. As such, it has both the usual advantages of TDSCF and improvements due to some inclusion of correlations (exact results for any two-mode problem, improved descriptions of dynamical corrections, and greater accuracy). A three-mode model Hamiltonian is analyzed using five approximate treatments, i.e., the usual TDSCF, the three TDSCF2 forms, and the TDSCF2-CI one. The quantities for comparison with the exact results include the decay P(t) of the initial state, the time dependencies of the energies e(i) of individual modes, and the overlap S(t) of the corresponding approximate wave function with the exact one. We find, indeed, that explicit inclusion of pair correlations improves the description of the quantum dynamics of the system.

Original languageEnglish
Pages (from-to)7916-7925
Number of pages10
JournalJournal of Chemical Physics
Volume99
Issue number10
Publication statusPublished - 1993

Fingerprint

Hamiltonians
configuration interaction
Wave functions
configurations
inclusions
coupled modes
self consistent fields
wave functions
decay
energy

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Vekhter, B., Ratner, M. A., & Gerber, R. B. (1993). Dynamic mean-field models with correlated modes. Journal of Chemical Physics, 99(10), 7916-7925.

Dynamic mean-field models with correlated modes. / Vekhter, B.; Ratner, Mark A; Gerber, R. B.

In: Journal of Chemical Physics, Vol. 99, No. 10, 1993, p. 7916-7925.

Research output: Contribution to journalArticle

Vekhter, B, Ratner, MA & Gerber, RB 1993, 'Dynamic mean-field models with correlated modes', Journal of Chemical Physics, vol. 99, no. 10, pp. 7916-7925.
Vekhter, B. ; Ratner, Mark A ; Gerber, R. B. / Dynamic mean-field models with correlated modes. In: Journal of Chemical Physics. 1993 ; Vol. 99, No. 10. pp. 7916-7925.
@article{571c3dd98333462194c834591a3bb89f,
title = "Dynamic mean-field models with correlated modes",
abstract = "We discuss a generalized dynamic mean-field method combining the advantages of explicit pair correlations and of configuration interaction. The approximate dynamical method, which we call time-dependent self-consistent-field configuration interaction (TDSCF2-CI), is constructed by including N(N-1)/2 TDSCF2 configurations. In each configuration a given pair of N coupled modes is directly (not in the mean-field approach) correlated; the N(N-1)/2 configurations include all such choices of pairs. As such, it has both the usual advantages of TDSCF and improvements due to some inclusion of correlations (exact results for any two-mode problem, improved descriptions of dynamical corrections, and greater accuracy). A three-mode model Hamiltonian is analyzed using five approximate treatments, i.e., the usual TDSCF, the three TDSCF2 forms, and the TDSCF2-CI one. The quantities for comparison with the exact results include the decay P(t) of the initial state, the time dependencies of the energies e(i) of individual modes, and the overlap S(t) of the corresponding approximate wave function with the exact one. We find, indeed, that explicit inclusion of pair correlations improves the description of the quantum dynamics of the system.",
author = "B. Vekhter and Ratner, {Mark A} and Gerber, {R. B.}",
year = "1993",
language = "English",
volume = "99",
pages = "7916--7925",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "10",

}

TY - JOUR

T1 - Dynamic mean-field models with correlated modes

AU - Vekhter, B.

AU - Ratner, Mark A

AU - Gerber, R. B.

PY - 1993

Y1 - 1993

N2 - We discuss a generalized dynamic mean-field method combining the advantages of explicit pair correlations and of configuration interaction. The approximate dynamical method, which we call time-dependent self-consistent-field configuration interaction (TDSCF2-CI), is constructed by including N(N-1)/2 TDSCF2 configurations. In each configuration a given pair of N coupled modes is directly (not in the mean-field approach) correlated; the N(N-1)/2 configurations include all such choices of pairs. As such, it has both the usual advantages of TDSCF and improvements due to some inclusion of correlations (exact results for any two-mode problem, improved descriptions of dynamical corrections, and greater accuracy). A three-mode model Hamiltonian is analyzed using five approximate treatments, i.e., the usual TDSCF, the three TDSCF2 forms, and the TDSCF2-CI one. The quantities for comparison with the exact results include the decay P(t) of the initial state, the time dependencies of the energies e(i) of individual modes, and the overlap S(t) of the corresponding approximate wave function with the exact one. We find, indeed, that explicit inclusion of pair correlations improves the description of the quantum dynamics of the system.

AB - We discuss a generalized dynamic mean-field method combining the advantages of explicit pair correlations and of configuration interaction. The approximate dynamical method, which we call time-dependent self-consistent-field configuration interaction (TDSCF2-CI), is constructed by including N(N-1)/2 TDSCF2 configurations. In each configuration a given pair of N coupled modes is directly (not in the mean-field approach) correlated; the N(N-1)/2 configurations include all such choices of pairs. As such, it has both the usual advantages of TDSCF and improvements due to some inclusion of correlations (exact results for any two-mode problem, improved descriptions of dynamical corrections, and greater accuracy). A three-mode model Hamiltonian is analyzed using five approximate treatments, i.e., the usual TDSCF, the three TDSCF2 forms, and the TDSCF2-CI one. The quantities for comparison with the exact results include the decay P(t) of the initial state, the time dependencies of the energies e(i) of individual modes, and the overlap S(t) of the corresponding approximate wave function with the exact one. We find, indeed, that explicit inclusion of pair correlations improves the description of the quantum dynamics of the system.

UR - http://www.scopus.com/inward/record.url?scp=0001499893&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001499893&partnerID=8YFLogxK

M3 - Article

VL - 99

SP - 7916

EP - 7925

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 10

ER -