Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements

Melissa Mushrush, Antonio Facchetti, Michael Lefenfeld, Howard E. Katz, Tobin J Marks

Research output: Contribution to journalArticle

363 Citations (Scopus)

Abstract

The synthesis of a new series of mixed phenylene - thiophene oligomers is reported; 2,5-bis(4-n-hexylphenyl)thiophene (dH-PTP, 1), 5,5′-bis(4-n- hexylphenyl)-2,2′-bithiophene (dH-PTTP, 2), 5,5″-bis-(4-n-hexylphenyl)-2,2′:5′,2″-terthiophene (dH-PT3P, 3), 5,5‴-bis(4-n-hexylphenyl)-2,2′:5′, 2″:5′,2‴-quater-thiophene (dH-PT4P, 4), 1,4-bis[5-(4-n-hexylphenyl)-2-thienyl]benzene (dH-PTPTP, 5), and 2,5-bis[4(4′-n-hexylphenyl)phenyl]thiophene (dH-PPTPP, 6) were characterized by 1H NMR, elemental analysis, UV-visible spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Vacuum-evaporated and solution-cast films were characterized by X-ray diffraction and scanning electron microscopy. All compounds display high p-type carrier mobilities as evaporated (up to 0.09 cm2/Vs) and as solution-cast (up to 0.03 cm2/Vs) films on both Si/SiO2 and ITO/GR (glass resin) substrates. The straightforwardly synthesized dH-PTTP (2) displays an unprecedented combination of mobility, on/off ratio, stability, and processability. Both dH-PTTP (2) and dH-PPTPP (6) display a reversible, tunable, and stable memory effect even as solution-cast devices, with turn-on characteristics shifting from accumulation mode to zero or depletion mode after a writing voltage Vw is applied. The charge storage is distributed over the gate dielectric structure and is concentrated near the dielectric-semiconductor interface, as evidenced by the response of "floating gate" configuration devices. Simple nonvolatile elements have been fabricated by solution-only techniques on ITO substrates using spin-coated glass resin, solution-cast oligomeric semiconductors, and painted graphite paste electrodes.

Original languageEnglish
Pages (from-to)9414-9423
Number of pages10
JournalJournal of the American Chemical Society
Volume125
Issue number31
DOIs
Publication statusPublished - Aug 6 2003

Fingerprint

Organic field effect transistors
Thiophenes
Thiophene
Transistors
Data storage equipment
Semiconductors
Glass
Resins
Semiconductor materials
ITO glass
Equipment and Supplies
Graphite
Gate dielectrics
Carrier mobility
Differential Scanning Calorimetry
Substrates
Vacuum
Ointments
Benzene
Oligomers

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements. / Mushrush, Melissa; Facchetti, Antonio; Lefenfeld, Michael; Katz, Howard E.; Marks, Tobin J.

In: Journal of the American Chemical Society, Vol. 125, No. 31, 06.08.2003, p. 9414-9423.

Research output: Contribution to journalArticle

@article{16bc483361094e648ce985356027c639,
title = "Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements",
abstract = "The synthesis of a new series of mixed phenylene - thiophene oligomers is reported; 2,5-bis(4-n-hexylphenyl)thiophene (dH-PTP, 1), 5,5′-bis(4-n- hexylphenyl)-2,2′-bithiophene (dH-PTTP, 2), 5,5″-bis-(4-n-hexylphenyl)-2,2′:5′,2″-terthiophene (dH-PT3P, 3), 5,5‴-bis(4-n-hexylphenyl)-2,2′:5′, 2″:5′,2‴-quater-thiophene (dH-PT4P, 4), 1,4-bis[5-(4-n-hexylphenyl)-2-thienyl]benzene (dH-PTPTP, 5), and 2,5-bis[4(4′-n-hexylphenyl)phenyl]thiophene (dH-PPTPP, 6) were characterized by 1H NMR, elemental analysis, UV-visible spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Vacuum-evaporated and solution-cast films were characterized by X-ray diffraction and scanning electron microscopy. All compounds display high p-type carrier mobilities as evaporated (up to 0.09 cm2/Vs) and as solution-cast (up to 0.03 cm2/Vs) films on both Si/SiO2 and ITO/GR (glass resin) substrates. The straightforwardly synthesized dH-PTTP (2) displays an unprecedented combination of mobility, on/off ratio, stability, and processability. Both dH-PTTP (2) and dH-PPTPP (6) display a reversible, tunable, and stable memory effect even as solution-cast devices, with turn-on characteristics shifting from accumulation mode to zero or depletion mode after a writing voltage Vw is applied. The charge storage is distributed over the gate dielectric structure and is concentrated near the dielectric-semiconductor interface, as evidenced by the response of {"}floating gate{"} configuration devices. Simple nonvolatile elements have been fabricated by solution-only techniques on ITO substrates using spin-coated glass resin, solution-cast oligomeric semiconductors, and painted graphite paste electrodes.",
author = "Melissa Mushrush and Antonio Facchetti and Michael Lefenfeld and Katz, {Howard E.} and Marks, {Tobin J}",
year = "2003",
month = "8",
day = "6",
doi = "10.1021/ja035143a",
language = "English",
volume = "125",
pages = "9414--9423",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "31",

}

TY - JOUR

T1 - Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements

AU - Mushrush, Melissa

AU - Facchetti, Antonio

AU - Lefenfeld, Michael

AU - Katz, Howard E.

AU - Marks, Tobin J

PY - 2003/8/6

Y1 - 2003/8/6

N2 - The synthesis of a new series of mixed phenylene - thiophene oligomers is reported; 2,5-bis(4-n-hexylphenyl)thiophene (dH-PTP, 1), 5,5′-bis(4-n- hexylphenyl)-2,2′-bithiophene (dH-PTTP, 2), 5,5″-bis-(4-n-hexylphenyl)-2,2′:5′,2″-terthiophene (dH-PT3P, 3), 5,5‴-bis(4-n-hexylphenyl)-2,2′:5′, 2″:5′,2‴-quater-thiophene (dH-PT4P, 4), 1,4-bis[5-(4-n-hexylphenyl)-2-thienyl]benzene (dH-PTPTP, 5), and 2,5-bis[4(4′-n-hexylphenyl)phenyl]thiophene (dH-PPTPP, 6) were characterized by 1H NMR, elemental analysis, UV-visible spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Vacuum-evaporated and solution-cast films were characterized by X-ray diffraction and scanning electron microscopy. All compounds display high p-type carrier mobilities as evaporated (up to 0.09 cm2/Vs) and as solution-cast (up to 0.03 cm2/Vs) films on both Si/SiO2 and ITO/GR (glass resin) substrates. The straightforwardly synthesized dH-PTTP (2) displays an unprecedented combination of mobility, on/off ratio, stability, and processability. Both dH-PTTP (2) and dH-PPTPP (6) display a reversible, tunable, and stable memory effect even as solution-cast devices, with turn-on characteristics shifting from accumulation mode to zero or depletion mode after a writing voltage Vw is applied. The charge storage is distributed over the gate dielectric structure and is concentrated near the dielectric-semiconductor interface, as evidenced by the response of "floating gate" configuration devices. Simple nonvolatile elements have been fabricated by solution-only techniques on ITO substrates using spin-coated glass resin, solution-cast oligomeric semiconductors, and painted graphite paste electrodes.

AB - The synthesis of a new series of mixed phenylene - thiophene oligomers is reported; 2,5-bis(4-n-hexylphenyl)thiophene (dH-PTP, 1), 5,5′-bis(4-n- hexylphenyl)-2,2′-bithiophene (dH-PTTP, 2), 5,5″-bis-(4-n-hexylphenyl)-2,2′:5′,2″-terthiophene (dH-PT3P, 3), 5,5‴-bis(4-n-hexylphenyl)-2,2′:5′, 2″:5′,2‴-quater-thiophene (dH-PT4P, 4), 1,4-bis[5-(4-n-hexylphenyl)-2-thienyl]benzene (dH-PTPTP, 5), and 2,5-bis[4(4′-n-hexylphenyl)phenyl]thiophene (dH-PPTPP, 6) were characterized by 1H NMR, elemental analysis, UV-visible spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Vacuum-evaporated and solution-cast films were characterized by X-ray diffraction and scanning electron microscopy. All compounds display high p-type carrier mobilities as evaporated (up to 0.09 cm2/Vs) and as solution-cast (up to 0.03 cm2/Vs) films on both Si/SiO2 and ITO/GR (glass resin) substrates. The straightforwardly synthesized dH-PTTP (2) displays an unprecedented combination of mobility, on/off ratio, stability, and processability. Both dH-PTTP (2) and dH-PPTPP (6) display a reversible, tunable, and stable memory effect even as solution-cast devices, with turn-on characteristics shifting from accumulation mode to zero or depletion mode after a writing voltage Vw is applied. The charge storage is distributed over the gate dielectric structure and is concentrated near the dielectric-semiconductor interface, as evidenced by the response of "floating gate" configuration devices. Simple nonvolatile elements have been fabricated by solution-only techniques on ITO substrates using spin-coated glass resin, solution-cast oligomeric semiconductors, and painted graphite paste electrodes.

UR - http://www.scopus.com/inward/record.url?scp=0042709503&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0042709503&partnerID=8YFLogxK

U2 - 10.1021/ja035143a

DO - 10.1021/ja035143a

M3 - Article

VL - 125

SP - 9414

EP - 9423

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 31

ER -