TY - JOUR
T1 - Effect of interphase mixing on the structure of calcium silicate intergranular film/silicon nitride crystal interfaces
AU - Su, Xiaotao
AU - Garofalini, Stephen H.
PY - 2005/6/30
Y1 - 2005/6/30
N2 - Molecular-dynamics simulations of intergranular films (IGF) containing Si, O, N, and Ca in contact with Si3N4 surfaces containing different levels of interface mixing of the species from the IGF with the crystal surfaces were performed using a multibody interatomic potential. This mixing is equivalent to the formation of a roughened silicon oxynitride crystal surface. With significant interphase mixing at the crystal surfaces, less ordering into the IGF caused by the compositionally modified oxynitride interfaces is observed. Such results are in contrast to our earlier data that showed significant ordering into the IGF induced by the ideally terminated crystal surfaces with no interphase mixing. In all cases, the central position of the first peak in the Si-O pair distribution function (PDF) at the interface ranges from 1.62 to 1.64 Å, consistent with recent experimental findings. The central position of the first peak in the Si-N PDF ranges from 1.72 to 1.73 Å, consistent with experimental results. With increased interphase mixing, the intensity as well as the area of the first peak of the Si-O and Si-N PDFs for Si attached to the crystal decreases, indicating the decrease of coordination number of O or N with these silicon. Such combined decrease in coordination indicates a significant remnant of vacancies in the crystal surfaces due to the exchange process used here. The results imply a significant effect of interface roughness on the extent of ordering in the amorphous IGF induced by the crystal surface.
AB - Molecular-dynamics simulations of intergranular films (IGF) containing Si, O, N, and Ca in contact with Si3N4 surfaces containing different levels of interface mixing of the species from the IGF with the crystal surfaces were performed using a multibody interatomic potential. This mixing is equivalent to the formation of a roughened silicon oxynitride crystal surface. With significant interphase mixing at the crystal surfaces, less ordering into the IGF caused by the compositionally modified oxynitride interfaces is observed. Such results are in contrast to our earlier data that showed significant ordering into the IGF induced by the ideally terminated crystal surfaces with no interphase mixing. In all cases, the central position of the first peak in the Si-O pair distribution function (PDF) at the interface ranges from 1.62 to 1.64 Å, consistent with recent experimental findings. The central position of the first peak in the Si-N PDF ranges from 1.72 to 1.73 Å, consistent with experimental results. With increased interphase mixing, the intensity as well as the area of the first peak of the Si-O and Si-N PDFs for Si attached to the crystal decreases, indicating the decrease of coordination number of O or N with these silicon. Such combined decrease in coordination indicates a significant remnant of vacancies in the crystal surfaces due to the exchange process used here. The results imply a significant effect of interface roughness on the extent of ordering in the amorphous IGF induced by the crystal surface.
UR - http://www.scopus.com/inward/record.url?scp=20544454793&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=20544454793&partnerID=8YFLogxK
U2 - 10.1063/1.1925767
DO - 10.1063/1.1925767
M3 - Article
AN - SCOPUS:20544454793
VL - 97
JO - Journal of Applied Physics
JF - Journal of Applied Physics
SN - 0021-8979
IS - 11
M1 - 113526
ER -