Effect of oxygen defects blocking barriers on gadolinium doped ceria (GDC) electro-chemo-mechanical properties

Ahsanul Kabir, Simone Santucci, Ngo Van Nong, Maxim Varenik, Igor Lubomirsky, Robin Nigon, Paul Muralt, Vincenzo Esposito

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Some oxygen defective metal oxides, such as cerium and bismuth oxides, have recently shown exceptional electrostrictive properties that are even superior to the best performing lead-based electrostrictors, e.g. lead-magnesium-niobates (PMN). Compared to piezoelectric ceramics, electromechanical mechanisms of such materials do not depend on crystalline symmetry but on the concentration of oxygen vacancy (VO ⋅⋅) in the lattice. In this work, we investigate for the first time the role of oxygen defects configuration on the electro-chemo-mechanical properties. This is achieved by tuning the oxygen defects blocking barrier density in polycrystalline gadolinium doped ceria with known oxygen vacancy concentration, Ce0.9Gd0.1O2-δ, δ = 0.05. Nanometric starting powders of ca. ∼12 nm are sintered in different conditions, including field assisted spark plasma sintering (SPS), fast firing and conventional method at high temperatures. These approaches allow controlling grain size and Gd-dopant diffusion, i.e. via thermally driven solute drag mechanism. By correlating the electro-chemo-mechanical properties, we show that oxygen vacancy distribution in the materials plays a key role in ceria electrostriction, overcoming the expected contributions from grain size and dopant concentration.

Original languageEnglish
Pages (from-to)53-60
Number of pages8
JournalActa Materialia
Volume174
DOIs
Publication statusPublished - Aug 1 2019

    Fingerprint

Keywords

  • Electrostriction
  • Gadolinium-doped ceria
  • Sintering
  • Vacancies

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Polymers and Plastics
  • Metals and Alloys

Cite this