Effect of terminal groups, polyene chain length, and solvent on the first excited singlet states of carotenoids

Zhangfei He, David Gosztola, Yi Deng, Guoqiang Gao, Michael R. Wasielewski, Lowell D. Kispert

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

The effect of terminal groups, polyene chain length, and solvent on the first excited singlet states (S1) of carotenoids was studied by steady-state and transient optical absorption spectroscopy, and AM1 semiempirical molecular orbital calculations. The carotenoids studied were ethyl 8′-apo-β-caroten-8′-oate (I), ethyl 6′-apo-β-caroten-6′-oate (II), ethyl 4′-apo-β-caroten-4′-oate (III), 8′-apo-β-caroten-8′-nitrile (IV), 6′-apo-β-caroten-6′-nitrile (V), 4′-apo-β-caroten-4′-nitrile (VI), 8′-apo-β-caroten-8′-al (VII), and 6′-apo-β-caroten-6′-al (VIII). Solvents were 3-methylpentane (3-MP) and MeCN. The effect of solvent on the S1 absorption maxima is similar to that on the ground state (S0) absorption maxima, which suggests that both effects stem from the same type of interaction, i.e., the dispersive interaction between carotenoids and solvents. Carotenoids with terminal CHO groups have S1 absorption maxima at longer wavelenths than those with terminal CN or CO2Et groups. The S1 absorption maxima are red-shifted with increasing polyene chain length. In the nonpolar solvent 3-MP, the S1 lifetimes of carotenoids depend mainly on the polyene chain length. With a one C=C bond increase, the S1 lifetime decreases by a factor of ca. 2 (ca. 24 ps for I, IV, and VII; 12 ps for II, V, and VIII; and 7 ps for III and VI). Terminal groups have little effect on the S1 lifetimes in 3-MP. However, in the polar solvent MeCN, carotenoids with terminal CHO groups have decreased S1 lifetimes (ca. 8 ps for VII and 6 ps for VIII), while carotenoids with terminal CN and CO2Et groups have essentially unchanged S1 lifetimes. This observation, along with the data of β-carotene and 7′-apo-7′,7′-dicyano-β-carotene, suggests that polar solvents could decrease the S1 lifetimes of carotenoids, when, and only when, there is considerable charge transfer character in their excited states.

Original languageEnglish
Pages (from-to)6668-6673
Number of pages6
JournalJournal of Physical Chemistry B
Volume104
Issue number28
Publication statusPublished - Jul 20 2000

Fingerprint

Polyenes
carotenoids
Carotenoids
Chain length
Excited states
life (durability)
excitation
nitriles
Nitriles
carotene
Orbital calculations
stems
Molecular orbitals
molecular orbitals
absorption spectroscopy
optical absorption
Absorption spectroscopy
Light absorption
Ground state
charge transfer

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Engineering(all)

Cite this

Effect of terminal groups, polyene chain length, and solvent on the first excited singlet states of carotenoids. / He, Zhangfei; Gosztola, David; Deng, Yi; Gao, Guoqiang; Wasielewski, Michael R.; Kispert, Lowell D.

In: Journal of Physical Chemistry B, Vol. 104, No. 28, 20.07.2000, p. 6668-6673.

Research output: Contribution to journalArticle

He, Zhangfei ; Gosztola, David ; Deng, Yi ; Gao, Guoqiang ; Wasielewski, Michael R. ; Kispert, Lowell D. / Effect of terminal groups, polyene chain length, and solvent on the first excited singlet states of carotenoids. In: Journal of Physical Chemistry B. 2000 ; Vol. 104, No. 28. pp. 6668-6673.
@article{d7569d87670e4fe08aff627178a077b2,
title = "Effect of terminal groups, polyene chain length, and solvent on the first excited singlet states of carotenoids",
abstract = "The effect of terminal groups, polyene chain length, and solvent on the first excited singlet states (S1) of carotenoids was studied by steady-state and transient optical absorption spectroscopy, and AM1 semiempirical molecular orbital calculations. The carotenoids studied were ethyl 8′-apo-β-caroten-8′-oate (I), ethyl 6′-apo-β-caroten-6′-oate (II), ethyl 4′-apo-β-caroten-4′-oate (III), 8′-apo-β-caroten-8′-nitrile (IV), 6′-apo-β-caroten-6′-nitrile (V), 4′-apo-β-caroten-4′-nitrile (VI), 8′-apo-β-caroten-8′-al (VII), and 6′-apo-β-caroten-6′-al (VIII). Solvents were 3-methylpentane (3-MP) and MeCN. The effect of solvent on the S1 absorption maxima is similar to that on the ground state (S0) absorption maxima, which suggests that both effects stem from the same type of interaction, i.e., the dispersive interaction between carotenoids and solvents. Carotenoids with terminal CHO groups have S1 absorption maxima at longer wavelenths than those with terminal CN or CO2Et groups. The S1 absorption maxima are red-shifted with increasing polyene chain length. In the nonpolar solvent 3-MP, the S1 lifetimes of carotenoids depend mainly on the polyene chain length. With a one C=C bond increase, the S1 lifetime decreases by a factor of ca. 2 (ca. 24 ps for I, IV, and VII; 12 ps for II, V, and VIII; and 7 ps for III and VI). Terminal groups have little effect on the S1 lifetimes in 3-MP. However, in the polar solvent MeCN, carotenoids with terminal CHO groups have decreased S1 lifetimes (ca. 8 ps for VII and 6 ps for VIII), while carotenoids with terminal CN and CO2Et groups have essentially unchanged S1 lifetimes. This observation, along with the data of β-carotene and 7′-apo-7′,7′-dicyano-β-carotene, suggests that polar solvents could decrease the S1 lifetimes of carotenoids, when, and only when, there is considerable charge transfer character in their excited states.",
author = "Zhangfei He and David Gosztola and Yi Deng and Guoqiang Gao and Wasielewski, {Michael R.} and Kispert, {Lowell D.}",
year = "2000",
month = "7",
day = "20",
language = "English",
volume = "104",
pages = "6668--6673",
journal = "Journal of Physical Chemistry B Materials",
issn = "1520-6106",
publisher = "American Chemical Society",
number = "28",

}

TY - JOUR

T1 - Effect of terminal groups, polyene chain length, and solvent on the first excited singlet states of carotenoids

AU - He, Zhangfei

AU - Gosztola, David

AU - Deng, Yi

AU - Gao, Guoqiang

AU - Wasielewski, Michael R.

AU - Kispert, Lowell D.

PY - 2000/7/20

Y1 - 2000/7/20

N2 - The effect of terminal groups, polyene chain length, and solvent on the first excited singlet states (S1) of carotenoids was studied by steady-state and transient optical absorption spectroscopy, and AM1 semiempirical molecular orbital calculations. The carotenoids studied were ethyl 8′-apo-β-caroten-8′-oate (I), ethyl 6′-apo-β-caroten-6′-oate (II), ethyl 4′-apo-β-caroten-4′-oate (III), 8′-apo-β-caroten-8′-nitrile (IV), 6′-apo-β-caroten-6′-nitrile (V), 4′-apo-β-caroten-4′-nitrile (VI), 8′-apo-β-caroten-8′-al (VII), and 6′-apo-β-caroten-6′-al (VIII). Solvents were 3-methylpentane (3-MP) and MeCN. The effect of solvent on the S1 absorption maxima is similar to that on the ground state (S0) absorption maxima, which suggests that both effects stem from the same type of interaction, i.e., the dispersive interaction between carotenoids and solvents. Carotenoids with terminal CHO groups have S1 absorption maxima at longer wavelenths than those with terminal CN or CO2Et groups. The S1 absorption maxima are red-shifted with increasing polyene chain length. In the nonpolar solvent 3-MP, the S1 lifetimes of carotenoids depend mainly on the polyene chain length. With a one C=C bond increase, the S1 lifetime decreases by a factor of ca. 2 (ca. 24 ps for I, IV, and VII; 12 ps for II, V, and VIII; and 7 ps for III and VI). Terminal groups have little effect on the S1 lifetimes in 3-MP. However, in the polar solvent MeCN, carotenoids with terminal CHO groups have decreased S1 lifetimes (ca. 8 ps for VII and 6 ps for VIII), while carotenoids with terminal CN and CO2Et groups have essentially unchanged S1 lifetimes. This observation, along with the data of β-carotene and 7′-apo-7′,7′-dicyano-β-carotene, suggests that polar solvents could decrease the S1 lifetimes of carotenoids, when, and only when, there is considerable charge transfer character in their excited states.

AB - The effect of terminal groups, polyene chain length, and solvent on the first excited singlet states (S1) of carotenoids was studied by steady-state and transient optical absorption spectroscopy, and AM1 semiempirical molecular orbital calculations. The carotenoids studied were ethyl 8′-apo-β-caroten-8′-oate (I), ethyl 6′-apo-β-caroten-6′-oate (II), ethyl 4′-apo-β-caroten-4′-oate (III), 8′-apo-β-caroten-8′-nitrile (IV), 6′-apo-β-caroten-6′-nitrile (V), 4′-apo-β-caroten-4′-nitrile (VI), 8′-apo-β-caroten-8′-al (VII), and 6′-apo-β-caroten-6′-al (VIII). Solvents were 3-methylpentane (3-MP) and MeCN. The effect of solvent on the S1 absorption maxima is similar to that on the ground state (S0) absorption maxima, which suggests that both effects stem from the same type of interaction, i.e., the dispersive interaction between carotenoids and solvents. Carotenoids with terminal CHO groups have S1 absorption maxima at longer wavelenths than those with terminal CN or CO2Et groups. The S1 absorption maxima are red-shifted with increasing polyene chain length. In the nonpolar solvent 3-MP, the S1 lifetimes of carotenoids depend mainly on the polyene chain length. With a one C=C bond increase, the S1 lifetime decreases by a factor of ca. 2 (ca. 24 ps for I, IV, and VII; 12 ps for II, V, and VIII; and 7 ps for III and VI). Terminal groups have little effect on the S1 lifetimes in 3-MP. However, in the polar solvent MeCN, carotenoids with terminal CHO groups have decreased S1 lifetimes (ca. 8 ps for VII and 6 ps for VIII), while carotenoids with terminal CN and CO2Et groups have essentially unchanged S1 lifetimes. This observation, along with the data of β-carotene and 7′-apo-7′,7′-dicyano-β-carotene, suggests that polar solvents could decrease the S1 lifetimes of carotenoids, when, and only when, there is considerable charge transfer character in their excited states.

UR - http://www.scopus.com/inward/record.url?scp=0034224835&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034224835&partnerID=8YFLogxK

M3 - Article

VL - 104

SP - 6668

EP - 6673

JO - Journal of Physical Chemistry B Materials

JF - Journal of Physical Chemistry B Materials

SN - 1520-6106

IS - 28

ER -