Effects of Crystalline Perylenediimide Acceptor Morphology on Optoelectronic Properties and Device Performance

Patrick E. Hartnett, Eric A. Margulies, H. S S Ramakrishna Matte, Mark C Hersam, Tobin J Marks, Michael R Wasielewski

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

The perylenediimide (PDI)-based molecules N,N-bis(1-ethylpropyl)-2,5,8,11-tetraphenyl-PDI (3-pentyl), N,N-bis(3,7-dimethyloctyl)-2,5,8,11-tetraphenyl-PDI (3,7-DMO), N,N-bis(2-ethylhexyl)-2,5,8,11-tetraphenyl-PDI (2-EH), and N,N-bis(n-octyl)-2,5,8,11-tetraphenyl-PDI (n-octyl) are synthesized and investigated for photovoltaic response. Single-crystal X-ray structures reveal that these molecules crystallize in either herringbone or slip-stacked geometries and that the crystal packing morphology can be manipulated by changing the solubilizing alkyl substituents or the crystallization conditions. The herringbone structure is shown to result in limited electronic coupling between adjacent chromophores, while the slip-stacked geometry promotes strong coupling. In bulk-heterojunction blend films with the donor polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PBDTT-FTTE), the herringbone acceptors undergo more rapid charge separation than the slip-stacked acceptors but also suffer from increased geminate recombination, as measured by femtosecond transient absorption. This tendency toward recombination decreases short-circuit currents and therefore decreases power conversion efficiency from 3.9% in the purely slip-stacked system to 2.5% in the purely herringboned system. The ratio between the slip-stacked geometry and the herringbone geometry can be reliably controlled in PBDTT-FTTE:3,7-DMO blends using the solvent additive diiodooctane (DIO),and is monitored using grazing incidence wide-angle X-ray scattering (GIWAXS). At low DIO concentrations, diffraction peaks corresponding to the slip-stacked geometry predominate while at high concentrations those corresponding to the herringbone geometry predominate. This microstructural change correlates with changes in charge carrier generation efficiency and thus device power conversion efficiency. This work also provides insights on crystalline acceptor materials which are rare in comparison to amorphous materials, and these results argue that strong coupling between neighboring acceptor molecules is important for efficient charge separation in such systems.

Original languageEnglish
Pages (from-to)3928-3936
Number of pages9
JournalChemistry of Materials
Volume28
Issue number11
DOIs
Publication statusPublished - Jun 14 2016

Fingerprint

Optoelectronic devices
Crystalline materials
Geometry
Conversion efficiency
Molecules
Thiophene
Chromophores
Crystallization
Charge carriers
X ray scattering
Short circuit currents
Heterojunctions
perylenediimide
Polymers
Diffraction
Single crystals
X rays
Crystals

ASJC Scopus subject areas

  • Materials Chemistry
  • Chemical Engineering(all)
  • Chemistry(all)

Cite this

Effects of Crystalline Perylenediimide Acceptor Morphology on Optoelectronic Properties and Device Performance. / Hartnett, Patrick E.; Margulies, Eric A.; Matte, H. S S Ramakrishna; Hersam, Mark C; Marks, Tobin J; Wasielewski, Michael R.

In: Chemistry of Materials, Vol. 28, No. 11, 14.06.2016, p. 3928-3936.

Research output: Contribution to journalArticle

@article{b17ebcb083784cc0ab44f0ab670d6f0b,
title = "Effects of Crystalline Perylenediimide Acceptor Morphology on Optoelectronic Properties and Device Performance",
abstract = "The perylenediimide (PDI)-based molecules N,N-bis(1-ethylpropyl)-2,5,8,11-tetraphenyl-PDI (3-pentyl), N,N-bis(3,7-dimethyloctyl)-2,5,8,11-tetraphenyl-PDI (3,7-DMO), N,N-bis(2-ethylhexyl)-2,5,8,11-tetraphenyl-PDI (2-EH), and N,N-bis(n-octyl)-2,5,8,11-tetraphenyl-PDI (n-octyl) are synthesized and investigated for photovoltaic response. Single-crystal X-ray structures reveal that these molecules crystallize in either herringbone or slip-stacked geometries and that the crystal packing morphology can be manipulated by changing the solubilizing alkyl substituents or the crystallization conditions. The herringbone structure is shown to result in limited electronic coupling between adjacent chromophores, while the slip-stacked geometry promotes strong coupling. In bulk-heterojunction blend films with the donor polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PBDTT-FTTE), the herringbone acceptors undergo more rapid charge separation than the slip-stacked acceptors but also suffer from increased geminate recombination, as measured by femtosecond transient absorption. This tendency toward recombination decreases short-circuit currents and therefore decreases power conversion efficiency from 3.9{\%} in the purely slip-stacked system to 2.5{\%} in the purely herringboned system. The ratio between the slip-stacked geometry and the herringbone geometry can be reliably controlled in PBDTT-FTTE:3,7-DMO blends using the solvent additive diiodooctane (DIO),and is monitored using grazing incidence wide-angle X-ray scattering (GIWAXS). At low DIO concentrations, diffraction peaks corresponding to the slip-stacked geometry predominate while at high concentrations those corresponding to the herringbone geometry predominate. This microstructural change correlates with changes in charge carrier generation efficiency and thus device power conversion efficiency. This work also provides insights on crystalline acceptor materials which are rare in comparison to amorphous materials, and these results argue that strong coupling between neighboring acceptor molecules is important for efficient charge separation in such systems.",
author = "Hartnett, {Patrick E.} and Margulies, {Eric A.} and Matte, {H. S S Ramakrishna} and Hersam, {Mark C} and Marks, {Tobin J} and Wasielewski, {Michael R}",
year = "2016",
month = "6",
day = "14",
doi = "10.1021/acs.chemmater.6b01230",
language = "English",
volume = "28",
pages = "3928--3936",
journal = "Chemistry of Materials",
issn = "0897-4756",
publisher = "American Chemical Society",
number = "11",

}

TY - JOUR

T1 - Effects of Crystalline Perylenediimide Acceptor Morphology on Optoelectronic Properties and Device Performance

AU - Hartnett, Patrick E.

AU - Margulies, Eric A.

AU - Matte, H. S S Ramakrishna

AU - Hersam, Mark C

AU - Marks, Tobin J

AU - Wasielewski, Michael R

PY - 2016/6/14

Y1 - 2016/6/14

N2 - The perylenediimide (PDI)-based molecules N,N-bis(1-ethylpropyl)-2,5,8,11-tetraphenyl-PDI (3-pentyl), N,N-bis(3,7-dimethyloctyl)-2,5,8,11-tetraphenyl-PDI (3,7-DMO), N,N-bis(2-ethylhexyl)-2,5,8,11-tetraphenyl-PDI (2-EH), and N,N-bis(n-octyl)-2,5,8,11-tetraphenyl-PDI (n-octyl) are synthesized and investigated for photovoltaic response. Single-crystal X-ray structures reveal that these molecules crystallize in either herringbone or slip-stacked geometries and that the crystal packing morphology can be manipulated by changing the solubilizing alkyl substituents or the crystallization conditions. The herringbone structure is shown to result in limited electronic coupling between adjacent chromophores, while the slip-stacked geometry promotes strong coupling. In bulk-heterojunction blend films with the donor polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PBDTT-FTTE), the herringbone acceptors undergo more rapid charge separation than the slip-stacked acceptors but also suffer from increased geminate recombination, as measured by femtosecond transient absorption. This tendency toward recombination decreases short-circuit currents and therefore decreases power conversion efficiency from 3.9% in the purely slip-stacked system to 2.5% in the purely herringboned system. The ratio between the slip-stacked geometry and the herringbone geometry can be reliably controlled in PBDTT-FTTE:3,7-DMO blends using the solvent additive diiodooctane (DIO),and is monitored using grazing incidence wide-angle X-ray scattering (GIWAXS). At low DIO concentrations, diffraction peaks corresponding to the slip-stacked geometry predominate while at high concentrations those corresponding to the herringbone geometry predominate. This microstructural change correlates with changes in charge carrier generation efficiency and thus device power conversion efficiency. This work also provides insights on crystalline acceptor materials which are rare in comparison to amorphous materials, and these results argue that strong coupling between neighboring acceptor molecules is important for efficient charge separation in such systems.

AB - The perylenediimide (PDI)-based molecules N,N-bis(1-ethylpropyl)-2,5,8,11-tetraphenyl-PDI (3-pentyl), N,N-bis(3,7-dimethyloctyl)-2,5,8,11-tetraphenyl-PDI (3,7-DMO), N,N-bis(2-ethylhexyl)-2,5,8,11-tetraphenyl-PDI (2-EH), and N,N-bis(n-octyl)-2,5,8,11-tetraphenyl-PDI (n-octyl) are synthesized and investigated for photovoltaic response. Single-crystal X-ray structures reveal that these molecules crystallize in either herringbone or slip-stacked geometries and that the crystal packing morphology can be manipulated by changing the solubilizing alkyl substituents or the crystallization conditions. The herringbone structure is shown to result in limited electronic coupling between adjacent chromophores, while the slip-stacked geometry promotes strong coupling. In bulk-heterojunction blend films with the donor polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PBDTT-FTTE), the herringbone acceptors undergo more rapid charge separation than the slip-stacked acceptors but also suffer from increased geminate recombination, as measured by femtosecond transient absorption. This tendency toward recombination decreases short-circuit currents and therefore decreases power conversion efficiency from 3.9% in the purely slip-stacked system to 2.5% in the purely herringboned system. The ratio between the slip-stacked geometry and the herringbone geometry can be reliably controlled in PBDTT-FTTE:3,7-DMO blends using the solvent additive diiodooctane (DIO),and is monitored using grazing incidence wide-angle X-ray scattering (GIWAXS). At low DIO concentrations, diffraction peaks corresponding to the slip-stacked geometry predominate while at high concentrations those corresponding to the herringbone geometry predominate. This microstructural change correlates with changes in charge carrier generation efficiency and thus device power conversion efficiency. This work also provides insights on crystalline acceptor materials which are rare in comparison to amorphous materials, and these results argue that strong coupling between neighboring acceptor molecules is important for efficient charge separation in such systems.

UR - http://www.scopus.com/inward/record.url?scp=84974817392&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84974817392&partnerID=8YFLogxK

U2 - 10.1021/acs.chemmater.6b01230

DO - 10.1021/acs.chemmater.6b01230

M3 - Article

VL - 28

SP - 3928

EP - 3936

JO - Chemistry of Materials

JF - Chemistry of Materials

SN - 0897-4756

IS - 11

ER -