TY - JOUR
T1 - Efficient Removal of [UO2]2+, Cs+, and Sr2+ Ions by Radiation-Resistant Gallium Thioantimonates
AU - Feng, Mei Ling
AU - Sarma, Debajit
AU - Gao, Yu Jie
AU - Qi, Xing Hui
AU - Li, Wei An
AU - Huang, Xiao Ying
AU - Kanatzidis, Mercouri G.
N1 - Publisher Copyright:
© Copyright 2018 American Chemical Society.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2018/9/5
Y1 - 2018/9/5
N2 - Unconventional ion exchangers can achieve efficient removal of [UO2]2+, Cs+, and Sr2+ ions from complex aqueous solutions and are of great interest for environmental remediation. We report two new gallium thioantimonates, [Me2NH2]2[Ga2Sb2S7]·H2O (FJSM-GAS-1) and [Et2NH2]2[Ga2Sb2S7]·H2O (FJSM-GAS-2), which present excellent ion exchange properties for [UO2]2+, Cs+, and Sr2+ ions. They exhibit high ion exchange capacities for [UO2]2+, Cs+, and Sr2+ ions (qm U = 196 mg/g, qm Cs = 164 mg/g, and qm Sr = 80 mg/g for FJSM-GAS-1, qm U = 144 mg/g for FJSM-GAS-2) and short equilibrium times for [UO2]2+ ion exchange (5 min for FJSM-GAS-1 and 15 min for FJSM-GAS-2, respectively). Both compounds display active ion exchange with [UO2]2+ in the pH range of 2.9-10.5. Moreover, the sulfide compounds could maintain high distribution coefficients Kd U even in the presence of excess Na+, Ca2+, and HCO3 -. The distribution coefficient Kd U of 6.06 × 106 mL/g exhibited by FJSM-GAS-1 is the highest among the reported U adsorbents. The [UO2]2+-laden products can be recycled by conveniently eluting the uranium with a low-cost method. These advantages combined with facile synthesis, as well as β and Î radiation resistance, make FJSM-GAS-1 and FJSM-GAS-2 promising for selective separations in nuclear waste remediation.
AB - Unconventional ion exchangers can achieve efficient removal of [UO2]2+, Cs+, and Sr2+ ions from complex aqueous solutions and are of great interest for environmental remediation. We report two new gallium thioantimonates, [Me2NH2]2[Ga2Sb2S7]·H2O (FJSM-GAS-1) and [Et2NH2]2[Ga2Sb2S7]·H2O (FJSM-GAS-2), which present excellent ion exchange properties for [UO2]2+, Cs+, and Sr2+ ions. They exhibit high ion exchange capacities for [UO2]2+, Cs+, and Sr2+ ions (qm U = 196 mg/g, qm Cs = 164 mg/g, and qm Sr = 80 mg/g for FJSM-GAS-1, qm U = 144 mg/g for FJSM-GAS-2) and short equilibrium times for [UO2]2+ ion exchange (5 min for FJSM-GAS-1 and 15 min for FJSM-GAS-2, respectively). Both compounds display active ion exchange with [UO2]2+ in the pH range of 2.9-10.5. Moreover, the sulfide compounds could maintain high distribution coefficients Kd U even in the presence of excess Na+, Ca2+, and HCO3 -. The distribution coefficient Kd U of 6.06 × 106 mL/g exhibited by FJSM-GAS-1 is the highest among the reported U adsorbents. The [UO2]2+-laden products can be recycled by conveniently eluting the uranium with a low-cost method. These advantages combined with facile synthesis, as well as β and Î radiation resistance, make FJSM-GAS-1 and FJSM-GAS-2 promising for selective separations in nuclear waste remediation.
UR - http://www.scopus.com/inward/record.url?scp=85052307223&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052307223&partnerID=8YFLogxK
U2 - 10.1021/jacs.8b07457
DO - 10.1021/jacs.8b07457
M3 - Article
C2 - 30088768
AN - SCOPUS:85052307223
VL - 140
SP - 11133
EP - 11140
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
SN - 0002-7863
IS - 35
ER -