Eightfold Superstructure in K2Gd2Sb2Se9 and K2La2Sb2S9 Caused by Three-Dimensional Ordering of the 5s2 Lone Pair of Sb3+ Ions

Kyoung Shin Choi, Jason A. Hanko, Mercouri G Kanatzidis

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

The new isostructural compounds, K2Gd2Sb2Se9 and K2La2Sb2S9, were discovered by the molten polychalcogenide salt method. They crystallize in the orthorhombic space group Pbam with a=11.4880(3) Å, b=17.6612(1) Å, c=4.2201(1) Å, and Z=2 for K2Gd2Sb2Se9 and a=11.2080(5) Å, b=16.8781(8) Å, c=4.2419(2) Å, and Z=2 for K2La2Sb2S9. The compounds have a three-dimensional [M2Sb2Q9]2- framework (M=Gd, La; Q=Se, S) with K+-ion-filled channels running along the c axis. The coordination geometry around the rare earth atom is best described as a bicapped trigonal prism. The Gd3+/La3+ centered trigonal prisms share triangular faces with neighboring prisms forming one-dimensional columns along the c axis. The columns are connected to each other to form sheets by sharing Se/S atoms on the capping sites of the trigonal prisms. Sb3+ ions are stabilized in distorted octahedral sites. The SbQ6(Q=Se, S) octahedra share edges with neighboring octahedra making an infinite chain along the c axis and bridging Gd/La layers together to make the whole framework three-dimensional. In both compounds, Sb atoms appear to be positionally disordered over two crystallographically different sites with half occupancy. This disorder was removed upon elucidation of a 2a×2b×2c superstructure, which more accurately describes the positional ordering of Sb atoms in the structure. The superstructure of K2Gd2Sb2Se9 was refined in the monoclinic space group C2/m with a=22.8783(4) Å, b=8.4062(2) Å, c=20.970(1) Å, β=123.022(1)°, and Z=8. These compounds are semiconductors with band gap values of 1.33 eV for K2Gd2Sb2Se9 and 2.20 eV for K2La2Sb2S9. Magnetic susceptibility measurements indicate no apparent magnetic coupling between the Gd3+ centers showing Curie-Weiss behavior with μeff=7.96 B.M. K2Gd2Sb2Se9 melts congruently at 598°C while K2La2Sb2S9 decomposes gradually above 400°C. The Raman spectra show the diselenide stretching vibration in K2Gd2Sb2Se9 at 266 cm-1 and the disulfide stretching vibration in K2La2Sb2S9 at 473 cm-1.

Original languageEnglish
Pages (from-to)309-319
Number of pages11
JournalJournal of Solid State Chemistry
Volume147
Issue number1
DOIs
Publication statusPublished - Oct 1999

Fingerprint

Prisms
prisms
Ions
Atoms
Stretching
atoms
ions
Magnetic couplings
vibration
molten salts
disulfides
Magnetic susceptibility
Disulfides
Rare earths
Molten materials
Raman scattering
Energy gap
rare earth elements
Salts
disorders

ASJC Scopus subject areas

  • Inorganic Chemistry
  • Physical and Theoretical Chemistry
  • Materials Chemistry

Cite this

Eightfold Superstructure in K2Gd2Sb2Se9 and K2La2Sb2S9 Caused by Three-Dimensional Ordering of the 5s2 Lone Pair of Sb3+ Ions. / Choi, Kyoung Shin; Hanko, Jason A.; Kanatzidis, Mercouri G.

In: Journal of Solid State Chemistry, Vol. 147, No. 1, 10.1999, p. 309-319.

Research output: Contribution to journalArticle

@article{3679309f71534fa3b6afc3b839eccb29,
title = "Eightfold Superstructure in K2Gd2Sb2Se9 and K2La2Sb2S9 Caused by Three-Dimensional Ordering of the 5s2 Lone Pair of Sb3+ Ions",
abstract = "The new isostructural compounds, K2Gd2Sb2Se9 and K2La2Sb2S9, were discovered by the molten polychalcogenide salt method. They crystallize in the orthorhombic space group Pbam with a=11.4880(3) {\AA}, b=17.6612(1) {\AA}, c=4.2201(1) {\AA}, and Z=2 for K2Gd2Sb2Se9 and a=11.2080(5) {\AA}, b=16.8781(8) {\AA}, c=4.2419(2) {\AA}, and Z=2 for K2La2Sb2S9. The compounds have a three-dimensional [M2Sb2Q9]2- framework (M=Gd, La; Q=Se, S) with K+-ion-filled channels running along the c axis. The coordination geometry around the rare earth atom is best described as a bicapped trigonal prism. The Gd3+/La3+ centered trigonal prisms share triangular faces with neighboring prisms forming one-dimensional columns along the c axis. The columns are connected to each other to form sheets by sharing Se/S atoms on the capping sites of the trigonal prisms. Sb3+ ions are stabilized in distorted octahedral sites. The SbQ6(Q=Se, S) octahedra share edges with neighboring octahedra making an infinite chain along the c axis and bridging Gd/La layers together to make the whole framework three-dimensional. In both compounds, Sb atoms appear to be positionally disordered over two crystallographically different sites with half occupancy. This disorder was removed upon elucidation of a 2a×2b×2c superstructure, which more accurately describes the positional ordering of Sb atoms in the structure. The superstructure of K2Gd2Sb2Se9 was refined in the monoclinic space group C2/m with a=22.8783(4) {\AA}, b=8.4062(2) {\AA}, c=20.970(1) {\AA}, β=123.022(1)°, and Z=8. These compounds are semiconductors with band gap values of 1.33 eV for K2Gd2Sb2Se9 and 2.20 eV for K2La2Sb2S9. Magnetic susceptibility measurements indicate no apparent magnetic coupling between the Gd3+ centers showing Curie-Weiss behavior with μeff=7.96 B.M. K2Gd2Sb2Se9 melts congruently at 598°C while K2La2Sb2S9 decomposes gradually above 400°C. The Raman spectra show the diselenide stretching vibration in K2Gd2Sb2Se9 at 266 cm-1 and the disulfide stretching vibration in K2La2Sb2S9 at 473 cm-1.",
author = "Choi, {Kyoung Shin} and Hanko, {Jason A.} and Kanatzidis, {Mercouri G}",
year = "1999",
month = "10",
doi = "10.1006/jssc.1999.8287",
language = "English",
volume = "147",
pages = "309--319",
journal = "Journal of Solid State Chemistry",
issn = "0022-4596",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - Eightfold Superstructure in K2Gd2Sb2Se9 and K2La2Sb2S9 Caused by Three-Dimensional Ordering of the 5s2 Lone Pair of Sb3+ Ions

AU - Choi, Kyoung Shin

AU - Hanko, Jason A.

AU - Kanatzidis, Mercouri G

PY - 1999/10

Y1 - 1999/10

N2 - The new isostructural compounds, K2Gd2Sb2Se9 and K2La2Sb2S9, were discovered by the molten polychalcogenide salt method. They crystallize in the orthorhombic space group Pbam with a=11.4880(3) Å, b=17.6612(1) Å, c=4.2201(1) Å, and Z=2 for K2Gd2Sb2Se9 and a=11.2080(5) Å, b=16.8781(8) Å, c=4.2419(2) Å, and Z=2 for K2La2Sb2S9. The compounds have a three-dimensional [M2Sb2Q9]2- framework (M=Gd, La; Q=Se, S) with K+-ion-filled channels running along the c axis. The coordination geometry around the rare earth atom is best described as a bicapped trigonal prism. The Gd3+/La3+ centered trigonal prisms share triangular faces with neighboring prisms forming one-dimensional columns along the c axis. The columns are connected to each other to form sheets by sharing Se/S atoms on the capping sites of the trigonal prisms. Sb3+ ions are stabilized in distorted octahedral sites. The SbQ6(Q=Se, S) octahedra share edges with neighboring octahedra making an infinite chain along the c axis and bridging Gd/La layers together to make the whole framework three-dimensional. In both compounds, Sb atoms appear to be positionally disordered over two crystallographically different sites with half occupancy. This disorder was removed upon elucidation of a 2a×2b×2c superstructure, which more accurately describes the positional ordering of Sb atoms in the structure. The superstructure of K2Gd2Sb2Se9 was refined in the monoclinic space group C2/m with a=22.8783(4) Å, b=8.4062(2) Å, c=20.970(1) Å, β=123.022(1)°, and Z=8. These compounds are semiconductors with band gap values of 1.33 eV for K2Gd2Sb2Se9 and 2.20 eV for K2La2Sb2S9. Magnetic susceptibility measurements indicate no apparent magnetic coupling between the Gd3+ centers showing Curie-Weiss behavior with μeff=7.96 B.M. K2Gd2Sb2Se9 melts congruently at 598°C while K2La2Sb2S9 decomposes gradually above 400°C. The Raman spectra show the diselenide stretching vibration in K2Gd2Sb2Se9 at 266 cm-1 and the disulfide stretching vibration in K2La2Sb2S9 at 473 cm-1.

AB - The new isostructural compounds, K2Gd2Sb2Se9 and K2La2Sb2S9, were discovered by the molten polychalcogenide salt method. They crystallize in the orthorhombic space group Pbam with a=11.4880(3) Å, b=17.6612(1) Å, c=4.2201(1) Å, and Z=2 for K2Gd2Sb2Se9 and a=11.2080(5) Å, b=16.8781(8) Å, c=4.2419(2) Å, and Z=2 for K2La2Sb2S9. The compounds have a three-dimensional [M2Sb2Q9]2- framework (M=Gd, La; Q=Se, S) with K+-ion-filled channels running along the c axis. The coordination geometry around the rare earth atom is best described as a bicapped trigonal prism. The Gd3+/La3+ centered trigonal prisms share triangular faces with neighboring prisms forming one-dimensional columns along the c axis. The columns are connected to each other to form sheets by sharing Se/S atoms on the capping sites of the trigonal prisms. Sb3+ ions are stabilized in distorted octahedral sites. The SbQ6(Q=Se, S) octahedra share edges with neighboring octahedra making an infinite chain along the c axis and bridging Gd/La layers together to make the whole framework three-dimensional. In both compounds, Sb atoms appear to be positionally disordered over two crystallographically different sites with half occupancy. This disorder was removed upon elucidation of a 2a×2b×2c superstructure, which more accurately describes the positional ordering of Sb atoms in the structure. The superstructure of K2Gd2Sb2Se9 was refined in the monoclinic space group C2/m with a=22.8783(4) Å, b=8.4062(2) Å, c=20.970(1) Å, β=123.022(1)°, and Z=8. These compounds are semiconductors with band gap values of 1.33 eV for K2Gd2Sb2Se9 and 2.20 eV for K2La2Sb2S9. Magnetic susceptibility measurements indicate no apparent magnetic coupling between the Gd3+ centers showing Curie-Weiss behavior with μeff=7.96 B.M. K2Gd2Sb2Se9 melts congruently at 598°C while K2La2Sb2S9 decomposes gradually above 400°C. The Raman spectra show the diselenide stretching vibration in K2Gd2Sb2Se9 at 266 cm-1 and the disulfide stretching vibration in K2La2Sb2S9 at 473 cm-1.

UR - http://www.scopus.com/inward/record.url?scp=0001380699&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001380699&partnerID=8YFLogxK

U2 - 10.1006/jssc.1999.8287

DO - 10.1006/jssc.1999.8287

M3 - Article

AN - SCOPUS:0001380699

VL - 147

SP - 309

EP - 319

JO - Journal of Solid State Chemistry

JF - Journal of Solid State Chemistry

SN - 0022-4596

IS - 1

ER -