TY - JOUR
T1 - Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays
AU - Spurgeon, Joshua M.
AU - Walter, Michael G.
AU - Zhou, Junfeng
AU - Kohl, Paul A.
AU - Lewis, Nathan S.
N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2011/5
Y1 - 2011/5
N2 - The optical absorption, ionic conductivity, electronic conductivity, and gas separation properties have been evaluated for flexible composite films of ionically conductive polymers that contain partially embedded arrays of ordered, crystalline, p-type Si microwires. The cation exchange ionomer Nafion, and a recently developed anion exchange ionomer, poly(arylene ether sulfone) that contains quaternary ammonium groups (QAPSF), produced composite microwire array/ionomer membrane films that were suitable for operation in acidic or alkaline media, respectively. The ionic conductivity of the Si wire array/Nafion composite films in 2.0M H2SO4(aq) was 71 mS cm-1, and the conductivity of the Si wire array/QAPSF composite films in 2.0M KOH(aq) was 6.4 mS cm-1. Both values were comparable to the conductivities observed for films of these ionomers that did not contain embedded Si wire arrays. Two Si wire array/Nafion membranes were electrically connected in series, using a conducting polymer, to produce a trilayer, multifunctional membrane that exhibited an ionic conductivity in 2.0MH2SO4(aq) of 57 mS cm-1 and an ohmic electrical contact, with an areal resistance of ∼0.30 Ω cm2, between the two physically separate embedded Si wire arrays. All of the wire array/ionomer composite membranes showed low rates of hydrogen crossover. Optical measurements indicated very low absorption (<3%) in the ionexchange polymers but high light absorption (up to 80%) by the wire arrays even at normal incidence, attesting to the suitability of such multifunctional membranes for application in solar fuels production.
AB - The optical absorption, ionic conductivity, electronic conductivity, and gas separation properties have been evaluated for flexible composite films of ionically conductive polymers that contain partially embedded arrays of ordered, crystalline, p-type Si microwires. The cation exchange ionomer Nafion, and a recently developed anion exchange ionomer, poly(arylene ether sulfone) that contains quaternary ammonium groups (QAPSF), produced composite microwire array/ionomer membrane films that were suitable for operation in acidic or alkaline media, respectively. The ionic conductivity of the Si wire array/Nafion composite films in 2.0M H2SO4(aq) was 71 mS cm-1, and the conductivity of the Si wire array/QAPSF composite films in 2.0M KOH(aq) was 6.4 mS cm-1. Both values were comparable to the conductivities observed for films of these ionomers that did not contain embedded Si wire arrays. Two Si wire array/Nafion membranes were electrically connected in series, using a conducting polymer, to produce a trilayer, multifunctional membrane that exhibited an ionic conductivity in 2.0MH2SO4(aq) of 57 mS cm-1 and an ohmic electrical contact, with an areal resistance of ∼0.30 Ω cm2, between the two physically separate embedded Si wire arrays. All of the wire array/ionomer composite membranes showed low rates of hydrogen crossover. Optical measurements indicated very low absorption (<3%) in the ionexchange polymers but high light absorption (up to 80%) by the wire arrays even at normal incidence, attesting to the suitability of such multifunctional membranes for application in solar fuels production.
UR - http://www.scopus.com/inward/record.url?scp=79955696615&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79955696615&partnerID=8YFLogxK
U2 - 10.1039/c1ee01028j
DO - 10.1039/c1ee01028j
M3 - Article
AN - SCOPUS:79955696615
VL - 4
SP - 1772
EP - 1780
JO - Energy and Environmental Science
JF - Energy and Environmental Science
SN - 1754-5692
IS - 5
ER -