Electrochemical Polymerization of Aniline Monomers Infiltrated into Well-Ordered Truncated Eggshell Structures of Polyelectrolyte Multilayers

Alejandro L. Briseno, Shubo Han, Iris E. Rauda, Feimeng Zhou, Chee Seng Toh, E. Joseph Nemanick, Nathan S Lewis

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

The use of nanosphere lithography to construct two-dimensional arrays of polystyrene (PS) particles coated with multilayered polyelectrolyte (PE) shells and truncated eggshell structures composed of PE thin layers is reported. The truncated eggshell PE structures were produced by extraction of the PS particle cores with toluene. The core-extraction process ruptures the apex of the PE coating and causes a slight expansion of the PE thin layers. Aniline hydrochloride was infiltrated into the PE shells and subsequently electropolymerized to yield an array of a composite containing polyaniline (PAni) and PE thin shells. Voltammetric, quartz crystal microbalance, and reflectance Fourier transform infrared spectroscopic measurements indicate that aniline monomers were confined within the thin PE shells and the electropolymerization occurred in the interior of the PE shell. The PE thickness governs the amount of infiltrated monomer and the ultimate loading of the PAni in the truncated eggshell structure. Surface-structure imaging by atomic force microscopy and scanning electron microscopy, carried out after each step of the fabrication process, shows the influence of the PE thickness on the organization and dimensions of the arrays. Thus, the PE thin shells composed of different layers can function as nanometer-sized vessels for the entrapment of charged species for further construction of composite materials and surface modifications. This approach affords a new avenue for the synthesis of new materials that combine the unique properties of conductive polymers and the controllability of template-directed surface reactions.

Original languageEnglish
Pages (from-to)219-226
Number of pages8
JournalLangmuir
Volume20
Issue number1
DOIs
Publication statusPublished - Jan 6 2004

Fingerprint

Electropolymerization
Aniline
aniline
Polyelectrolytes
Multilayers
polymerization
monomers
Monomers
polystyrene
composite materials
entrapment
controllability
hydrochlorides
quartz crystals
microbalances
surface reactions
vessels
toluene
apexes
templates

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Colloid and Surface Chemistry

Cite this

Electrochemical Polymerization of Aniline Monomers Infiltrated into Well-Ordered Truncated Eggshell Structures of Polyelectrolyte Multilayers. / Briseno, Alejandro L.; Han, Shubo; Rauda, Iris E.; Zhou, Feimeng; Toh, Chee Seng; Joseph Nemanick, E.; Lewis, Nathan S.

In: Langmuir, Vol. 20, No. 1, 06.01.2004, p. 219-226.

Research output: Contribution to journalArticle

Briseno, Alejandro L. ; Han, Shubo ; Rauda, Iris E. ; Zhou, Feimeng ; Toh, Chee Seng ; Joseph Nemanick, E. ; Lewis, Nathan S. / Electrochemical Polymerization of Aniline Monomers Infiltrated into Well-Ordered Truncated Eggshell Structures of Polyelectrolyte Multilayers. In: Langmuir. 2004 ; Vol. 20, No. 1. pp. 219-226.
@article{4d2caf94116040b1ab384ab79f4cad6f,
title = "Electrochemical Polymerization of Aniline Monomers Infiltrated into Well-Ordered Truncated Eggshell Structures of Polyelectrolyte Multilayers",
abstract = "The use of nanosphere lithography to construct two-dimensional arrays of polystyrene (PS) particles coated with multilayered polyelectrolyte (PE) shells and truncated eggshell structures composed of PE thin layers is reported. The truncated eggshell PE structures were produced by extraction of the PS particle cores with toluene. The core-extraction process ruptures the apex of the PE coating and causes a slight expansion of the PE thin layers. Aniline hydrochloride was infiltrated into the PE shells and subsequently electropolymerized to yield an array of a composite containing polyaniline (PAni) and PE thin shells. Voltammetric, quartz crystal microbalance, and reflectance Fourier transform infrared spectroscopic measurements indicate that aniline monomers were confined within the thin PE shells and the electropolymerization occurred in the interior of the PE shell. The PE thickness governs the amount of infiltrated monomer and the ultimate loading of the PAni in the truncated eggshell structure. Surface-structure imaging by atomic force microscopy and scanning electron microscopy, carried out after each step of the fabrication process, shows the influence of the PE thickness on the organization and dimensions of the arrays. Thus, the PE thin shells composed of different layers can function as nanometer-sized vessels for the entrapment of charged species for further construction of composite materials and surface modifications. This approach affords a new avenue for the synthesis of new materials that combine the unique properties of conductive polymers and the controllability of template-directed surface reactions.",
author = "Briseno, {Alejandro L.} and Shubo Han and Rauda, {Iris E.} and Feimeng Zhou and Toh, {Chee Seng} and {Joseph Nemanick}, E. and Lewis, {Nathan S}",
year = "2004",
month = "1",
day = "6",
doi = "10.1021/la035198q",
language = "English",
volume = "20",
pages = "219--226",
journal = "Langmuir",
issn = "0743-7463",
publisher = "American Chemical Society",
number = "1",

}

TY - JOUR

T1 - Electrochemical Polymerization of Aniline Monomers Infiltrated into Well-Ordered Truncated Eggshell Structures of Polyelectrolyte Multilayers

AU - Briseno, Alejandro L.

AU - Han, Shubo

AU - Rauda, Iris E.

AU - Zhou, Feimeng

AU - Toh, Chee Seng

AU - Joseph Nemanick, E.

AU - Lewis, Nathan S

PY - 2004/1/6

Y1 - 2004/1/6

N2 - The use of nanosphere lithography to construct two-dimensional arrays of polystyrene (PS) particles coated with multilayered polyelectrolyte (PE) shells and truncated eggshell structures composed of PE thin layers is reported. The truncated eggshell PE structures were produced by extraction of the PS particle cores with toluene. The core-extraction process ruptures the apex of the PE coating and causes a slight expansion of the PE thin layers. Aniline hydrochloride was infiltrated into the PE shells and subsequently electropolymerized to yield an array of a composite containing polyaniline (PAni) and PE thin shells. Voltammetric, quartz crystal microbalance, and reflectance Fourier transform infrared spectroscopic measurements indicate that aniline monomers were confined within the thin PE shells and the electropolymerization occurred in the interior of the PE shell. The PE thickness governs the amount of infiltrated monomer and the ultimate loading of the PAni in the truncated eggshell structure. Surface-structure imaging by atomic force microscopy and scanning electron microscopy, carried out after each step of the fabrication process, shows the influence of the PE thickness on the organization and dimensions of the arrays. Thus, the PE thin shells composed of different layers can function as nanometer-sized vessels for the entrapment of charged species for further construction of composite materials and surface modifications. This approach affords a new avenue for the synthesis of new materials that combine the unique properties of conductive polymers and the controllability of template-directed surface reactions.

AB - The use of nanosphere lithography to construct two-dimensional arrays of polystyrene (PS) particles coated with multilayered polyelectrolyte (PE) shells and truncated eggshell structures composed of PE thin layers is reported. The truncated eggshell PE structures were produced by extraction of the PS particle cores with toluene. The core-extraction process ruptures the apex of the PE coating and causes a slight expansion of the PE thin layers. Aniline hydrochloride was infiltrated into the PE shells and subsequently electropolymerized to yield an array of a composite containing polyaniline (PAni) and PE thin shells. Voltammetric, quartz crystal microbalance, and reflectance Fourier transform infrared spectroscopic measurements indicate that aniline monomers were confined within the thin PE shells and the electropolymerization occurred in the interior of the PE shell. The PE thickness governs the amount of infiltrated monomer and the ultimate loading of the PAni in the truncated eggshell structure. Surface-structure imaging by atomic force microscopy and scanning electron microscopy, carried out after each step of the fabrication process, shows the influence of the PE thickness on the organization and dimensions of the arrays. Thus, the PE thin shells composed of different layers can function as nanometer-sized vessels for the entrapment of charged species for further construction of composite materials and surface modifications. This approach affords a new avenue for the synthesis of new materials that combine the unique properties of conductive polymers and the controllability of template-directed surface reactions.

UR - http://www.scopus.com/inward/record.url?scp=0347128007&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0347128007&partnerID=8YFLogxK

U2 - 10.1021/la035198q

DO - 10.1021/la035198q

M3 - Article

VL - 20

SP - 219

EP - 226

JO - Langmuir

JF - Langmuir

SN - 0743-7463

IS - 1

ER -