TY - JOUR
T1 - Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes
AU - Kuciauskas, Darius
AU - Freund, Michael S.
AU - Gray, Harry B.
AU - Winkler, Jay R.
AU - Lewis, Nathan S.
PY - 2001/1/18
Y1 - 2001/1/18
N2 - The electron transfer dynamics in solar cells that utilize sensitized nanocrystalline titanium dioxide photoelectrodes and the iodide/triiodide redpx couple have been studied on a nanosecond time scale. The . ruthenium and osmium bipyridyl complexes Ru(H2L′)2(CN)2, Os(H2L′)2(CN)2, Ru(H2L′)2(NCS)2, and Os(H2L′)2(NCS)2, where H2L′ is 4,4′-dicarboxylic acid 2,2′-bipyridine, inject electrons into the semiconductor with a rate constant >108 s-1. The effects of excitation intensity, temperature, and applied potential on the recombination reaction were analyzed using a second-order kinetics model. The rates of charge recombination decrease with increasing driving force to the oxidized sensitizer, indicating that charge recombination occurs in the Marcus inverted region. The electronic coupling factors between the oxidized sensitizer and the injected electrons in TiO2 and the reorganization energies for the recombination reaction vary significantly for the different metal complexes. The charge recombination rates are well described by semiclassical electron transfer theory with reorganization energies of 0.55-1.18 eV. Solar cells sensitized with Ru(H2L′)2(CN)2, Os(H2L′)2- (CN)2, and Ru(H2L′)2(NCS)2 have favorable photoelectrochemical characteristics, and iodide is oxidized efficiently. In contrast, iodide oxidation limits the efficiency of cells based on sensitization of TiO2 with Os(H2L′)2(NCS)2. The observation that charge recombination occurs in the Marcus inverted region has important implications for the design of molecular sensitizers in nanocrystalline solar cells operated under our experimental conditions.
AB - The electron transfer dynamics in solar cells that utilize sensitized nanocrystalline titanium dioxide photoelectrodes and the iodide/triiodide redpx couple have been studied on a nanosecond time scale. The . ruthenium and osmium bipyridyl complexes Ru(H2L′)2(CN)2, Os(H2L′)2(CN)2, Ru(H2L′)2(NCS)2, and Os(H2L′)2(NCS)2, where H2L′ is 4,4′-dicarboxylic acid 2,2′-bipyridine, inject electrons into the semiconductor with a rate constant >108 s-1. The effects of excitation intensity, temperature, and applied potential on the recombination reaction were analyzed using a second-order kinetics model. The rates of charge recombination decrease with increasing driving force to the oxidized sensitizer, indicating that charge recombination occurs in the Marcus inverted region. The electronic coupling factors between the oxidized sensitizer and the injected electrons in TiO2 and the reorganization energies for the recombination reaction vary significantly for the different metal complexes. The charge recombination rates are well described by semiclassical electron transfer theory with reorganization energies of 0.55-1.18 eV. Solar cells sensitized with Ru(H2L′)2(CN)2, Os(H2L′)2- (CN)2, and Ru(H2L′)2(NCS)2 have favorable photoelectrochemical characteristics, and iodide is oxidized efficiently. In contrast, iodide oxidation limits the efficiency of cells based on sensitization of TiO2 with Os(H2L′)2(NCS)2. The observation that charge recombination occurs in the Marcus inverted region has important implications for the design of molecular sensitizers in nanocrystalline solar cells operated under our experimental conditions.
UR - http://www.scopus.com/inward/record.url?scp=0035132372&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035132372&partnerID=8YFLogxK
U2 - 10.1021/jp002545l
DO - 10.1021/jp002545l
M3 - Article
AN - SCOPUS:0035132372
VL - 105
SP - 392
EP - 403
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
SN - 1520-6106
IS - 2
ER -