TY - JOUR
T1 - Electronic Processes within Quantum Dot-Molecule Complexes
AU - Harris, Rachel D.
AU - Bettis Homan, Stephanie
AU - Kodaimati, Mohamad
AU - He, Chen
AU - Nepomnyashchii, Alexander B.
AU - Swenson, Nathaniel K.
AU - Lian, Shichen
AU - Calzada, Raul
AU - Weiss, Emily A
PY - 2016/11/9
Y1 - 2016/11/9
N2 - The subject of this review is the colloidal quantum dot (QD) and specifically the interaction of the QD with proximate molecules. It covers various functions of these molecules, including (i) ligands for the QDs, coupled electronically or vibrationally to localized surface states or to the delocalized states of the QD core, (ii) energy or electron donors or acceptors for the QDs, and (iii) structural components of QD assemblies that dictate QD-QD or QD-molecule interactions. Research on interactions of ligands with colloidal QDs has revealed that ligands determine not only the excited state dynamics of the QD but also, in some cases, its ground state electronic structure. Specifically, the article discusses (i) measurement of the electronic structure of colloidal QDs and the influence of their surface chemistry, in particular, dipolar ligands and exciton-delocalizing ligands, on their electronic energies; (ii) the role of molecules in interfacial electron and energy transfer processes involving QDs, including electron-to-vibrational energy transfer and the use of the ligand shell of a QD as a semipermeable membrane that gates its redox activity; and (iii) a particular application of colloidal QDs, photoredox catalysis, which exploits the combination of the electronic structure of the QD core and the chemistry at its surface to use the energy of the QD excited state to drive chemical reactions.
AB - The subject of this review is the colloidal quantum dot (QD) and specifically the interaction of the QD with proximate molecules. It covers various functions of these molecules, including (i) ligands for the QDs, coupled electronically or vibrationally to localized surface states or to the delocalized states of the QD core, (ii) energy or electron donors or acceptors for the QDs, and (iii) structural components of QD assemblies that dictate QD-QD or QD-molecule interactions. Research on interactions of ligands with colloidal QDs has revealed that ligands determine not only the excited state dynamics of the QD but also, in some cases, its ground state electronic structure. Specifically, the article discusses (i) measurement of the electronic structure of colloidal QDs and the influence of their surface chemistry, in particular, dipolar ligands and exciton-delocalizing ligands, on their electronic energies; (ii) the role of molecules in interfacial electron and energy transfer processes involving QDs, including electron-to-vibrational energy transfer and the use of the ligand shell of a QD as a semipermeable membrane that gates its redox activity; and (iii) a particular application of colloidal QDs, photoredox catalysis, which exploits the combination of the electronic structure of the QD core and the chemistry at its surface to use the energy of the QD excited state to drive chemical reactions.
UR - http://www.scopus.com/inward/record.url?scp=84994524995&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84994524995&partnerID=8YFLogxK
U2 - 10.1021/acs.chemrev.6b00102
DO - 10.1021/acs.chemrev.6b00102
M3 - Review article
AN - SCOPUS:84994524995
VL - 116
SP - 12865
EP - 12919
JO - Chemical Reviews
JF - Chemical Reviews
SN - 0009-2665
IS - 21
ER -