Electronic structure and magnetism of Ni overlayers on a Cu(001) substrate

Ding Sheng Wang, Arthur J Freeman, H. Krakauer

Research output: Contribution to journalArticle

110 Citations (Scopus)

Abstract

Our recently developed linearized augmented-plane-wave thin-film method is used to determine the electronic structure and magnetism of Ni overlayers on Cu(001). Accurate ab initio self-consistent spin-polarized semirelativistic band calculations are reported for (i) a clean five-layer Cu(001) slab and (ii) the same Cu slab plus one or two p(1×1) layers of Ni on either side. Results presented include charge and spin densities, work function, band structures, projected density of states, magnetic moments, and direct and transferred hyperfine fields. Both surface and interface effects are found to be important. The Ni overlayers are not magnetically dead: The Ni layer adjacent to the Cu has its moment decreased from the bulk value to 0.39B for the single Ni overlayer and to 0.47B for the two-Ni-thick layers; the surface Ni layer in the two-layer Ni on Cu film has its moment increased somewhat to 0.68B. This reduction in moment for the interface Ni arises primarily from charge transfer onto Ni sites from the Cu substrate. By contrast, the increase in moment of the Ni surface atoms arises in large part due to the dehybridization of the p electrons from the d-band electrons; these p electrons become more delocalized and spill out into the vacuum region. A similar effect was also observed for an unsupported Ni monolayer. In the case of the Ni monolayer on Cu, the total number of Ni electrons is almost the same as for bulk Ni. Here, the loss of electrons due to the dehybridization of p electrons is nearly canceled by the increase from its interface with the Cu substrate; the decrease in magnetic moment (to 0.39B) agrees with electron-capture experiments.

Original languageEnglish
Pages (from-to)1340-1351
Number of pages12
JournalPhysical Review B
Volume26
Issue number3
DOIs
Publication statusPublished - 1982

Fingerprint

Magnetism
Electronic structure
electronic structure
Electrons
Substrates
moments
electrons
Magnetic moments
slabs
magnetic moments
Monolayers
electron capture
Hazardous materials spills
surface layers
Band structure
plane waves
Charge transfer
charge transfer
vacuum
Vacuum

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this

Electronic structure and magnetism of Ni overlayers on a Cu(001) substrate. / Wang, Ding Sheng; Freeman, Arthur J; Krakauer, H.

In: Physical Review B, Vol. 26, No. 3, 1982, p. 1340-1351.

Research output: Contribution to journalArticle

Wang, Ding Sheng ; Freeman, Arthur J ; Krakauer, H. / Electronic structure and magnetism of Ni overlayers on a Cu(001) substrate. In: Physical Review B. 1982 ; Vol. 26, No. 3. pp. 1340-1351.
@article{1dc9b495b52141ba8ec61d66b080c311,
title = "Electronic structure and magnetism of Ni overlayers on a Cu(001) substrate",
abstract = "Our recently developed linearized augmented-plane-wave thin-film method is used to determine the electronic structure and magnetism of Ni overlayers on Cu(001). Accurate ab initio self-consistent spin-polarized semirelativistic band calculations are reported for (i) a clean five-layer Cu(001) slab and (ii) the same Cu slab plus one or two p(1×1) layers of Ni on either side. Results presented include charge and spin densities, work function, band structures, projected density of states, magnetic moments, and direct and transferred hyperfine fields. Both surface and interface effects are found to be important. The Ni overlayers are not magnetically dead: The Ni layer adjacent to the Cu has its moment decreased from the bulk value to 0.39B for the single Ni overlayer and to 0.47B for the two-Ni-thick layers; the surface Ni layer in the two-layer Ni on Cu film has its moment increased somewhat to 0.68B. This reduction in moment for the interface Ni arises primarily from charge transfer onto Ni sites from the Cu substrate. By contrast, the increase in moment of the Ni surface atoms arises in large part due to the dehybridization of the p electrons from the d-band electrons; these p electrons become more delocalized and spill out into the vacuum region. A similar effect was also observed for an unsupported Ni monolayer. In the case of the Ni monolayer on Cu, the total number of Ni electrons is almost the same as for bulk Ni. Here, the loss of electrons due to the dehybridization of p electrons is nearly canceled by the increase from its interface with the Cu substrate; the decrease in magnetic moment (to 0.39B) agrees with electron-capture experiments.",
author = "Wang, {Ding Sheng} and Freeman, {Arthur J} and H. Krakauer",
year = "1982",
doi = "10.1103/PhysRevB.26.1340",
language = "English",
volume = "26",
pages = "1340--1351",
journal = "Physical Review B-Condensed Matter",
issn = "1098-0121",
publisher = "American Physical Society",
number = "3",

}

TY - JOUR

T1 - Electronic structure and magnetism of Ni overlayers on a Cu(001) substrate

AU - Wang, Ding Sheng

AU - Freeman, Arthur J

AU - Krakauer, H.

PY - 1982

Y1 - 1982

N2 - Our recently developed linearized augmented-plane-wave thin-film method is used to determine the electronic structure and magnetism of Ni overlayers on Cu(001). Accurate ab initio self-consistent spin-polarized semirelativistic band calculations are reported for (i) a clean five-layer Cu(001) slab and (ii) the same Cu slab plus one or two p(1×1) layers of Ni on either side. Results presented include charge and spin densities, work function, band structures, projected density of states, magnetic moments, and direct and transferred hyperfine fields. Both surface and interface effects are found to be important. The Ni overlayers are not magnetically dead: The Ni layer adjacent to the Cu has its moment decreased from the bulk value to 0.39B for the single Ni overlayer and to 0.47B for the two-Ni-thick layers; the surface Ni layer in the two-layer Ni on Cu film has its moment increased somewhat to 0.68B. This reduction in moment for the interface Ni arises primarily from charge transfer onto Ni sites from the Cu substrate. By contrast, the increase in moment of the Ni surface atoms arises in large part due to the dehybridization of the p electrons from the d-band electrons; these p electrons become more delocalized and spill out into the vacuum region. A similar effect was also observed for an unsupported Ni monolayer. In the case of the Ni monolayer on Cu, the total number of Ni electrons is almost the same as for bulk Ni. Here, the loss of electrons due to the dehybridization of p electrons is nearly canceled by the increase from its interface with the Cu substrate; the decrease in magnetic moment (to 0.39B) agrees with electron-capture experiments.

AB - Our recently developed linearized augmented-plane-wave thin-film method is used to determine the electronic structure and magnetism of Ni overlayers on Cu(001). Accurate ab initio self-consistent spin-polarized semirelativistic band calculations are reported for (i) a clean five-layer Cu(001) slab and (ii) the same Cu slab plus one or two p(1×1) layers of Ni on either side. Results presented include charge and spin densities, work function, band structures, projected density of states, magnetic moments, and direct and transferred hyperfine fields. Both surface and interface effects are found to be important. The Ni overlayers are not magnetically dead: The Ni layer adjacent to the Cu has its moment decreased from the bulk value to 0.39B for the single Ni overlayer and to 0.47B for the two-Ni-thick layers; the surface Ni layer in the two-layer Ni on Cu film has its moment increased somewhat to 0.68B. This reduction in moment for the interface Ni arises primarily from charge transfer onto Ni sites from the Cu substrate. By contrast, the increase in moment of the Ni surface atoms arises in large part due to the dehybridization of the p electrons from the d-band electrons; these p electrons become more delocalized and spill out into the vacuum region. A similar effect was also observed for an unsupported Ni monolayer. In the case of the Ni monolayer on Cu, the total number of Ni electrons is almost the same as for bulk Ni. Here, the loss of electrons due to the dehybridization of p electrons is nearly canceled by the increase from its interface with the Cu substrate; the decrease in magnetic moment (to 0.39B) agrees with electron-capture experiments.

UR - http://www.scopus.com/inward/record.url?scp=0000510603&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000510603&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.26.1340

DO - 10.1103/PhysRevB.26.1340

M3 - Article

AN - SCOPUS:0000510603

VL - 26

SP - 1340

EP - 1351

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 3

ER -