Electronic structure of K 2Bi 8Se 13

D. I. Bilc, S. D. Mahanti, T. Kyratsi, D. Y. Chung, Mercouri G Kanatzidis, P. Larson

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

K 2Bi 8Se 13 belongs to a class of complex chalcogenides that shows potential for superior thermoelectric performance. This compound forms in two distinct phases, α and β. The β phase, which has several sites with mixed K/Bi occupancy, is a better thermoelectric. To understand the origin of this difference between the two phases we have carried out electronic structure calculations within ab initio density functional theory using the full potential linearized augmented plane wave (FLAPW) method. Both the local spin density approximation (LSDA) and the generalized gradient approximation (GGA) were used to treat the exchange and correlation potential. The spin-orbit interaction (SOI) was incorporated using a second variational procedure. The α phase is found to be a semiconductor with an indirect LSDA/GGA band gap of 0.38 eV/0.46 eV compared to 0.76 eV for the observed direct optical gap. For the β phase we have chosen two different ordered structures with extreme occupancies of K and Bi atoms at the "mixed sites." The system is found to be a semimetal for both the ordered structures. To incorporate the effect of mixed occupancy we have chosen a 1 × 1 × 2 supercell with an alternative K/Bi occupancy at the mixed sites. The system is a semiconductor with an indirect LSDA/GGA band gap of 0.32 eV/0.41 eV. We find that the mixed occupancy is crucial for the system to be a semiconductor because the Bi atoms at the mixed sites stabilize the p orbitals of the nearest-neighbor Se atoms by lowering their energy. We also find a strong anisotropy in the effective mass near the conduction band minimum, with the smallest effective mass along the mixed K/Bi chains (parallel to the c axis). This large anisotropy suggests that β-K 2Bi 8Se 13 has a great potential for an n-type thermoelectric.

Original languageEnglish
Article number085116
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume71
Issue number8
DOIs
Publication statusPublished - Feb 2005

Fingerprint

Electronic structure
Semiconductor materials
electronic structure
Atoms
Energy gap
Anisotropy
approximation
Chalcogenides
Metalloids
Conduction bands
gradients
Density functional theory
Orbits
atoms
anisotropy
chalcogenides
metalloids
spin-orbit interactions
conduction bands
plane waves

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this

Electronic structure of K 2Bi 8Se 13 . / Bilc, D. I.; Mahanti, S. D.; Kyratsi, T.; Chung, D. Y.; Kanatzidis, Mercouri G; Larson, P.

In: Physical Review B - Condensed Matter and Materials Physics, Vol. 71, No. 8, 085116, 02.2005.

Research output: Contribution to journalArticle

Bilc, D. I. ; Mahanti, S. D. ; Kyratsi, T. ; Chung, D. Y. ; Kanatzidis, Mercouri G ; Larson, P. / Electronic structure of K 2Bi 8Se 13 In: Physical Review B - Condensed Matter and Materials Physics. 2005 ; Vol. 71, No. 8.
@article{36e92d7239ee4fb99138cc5220e695a3,
title = "Electronic structure of K 2Bi 8Se 13",
abstract = "K 2Bi 8Se 13 belongs to a class of complex chalcogenides that shows potential for superior thermoelectric performance. This compound forms in two distinct phases, α and β. The β phase, which has several sites with mixed K/Bi occupancy, is a better thermoelectric. To understand the origin of this difference between the two phases we have carried out electronic structure calculations within ab initio density functional theory using the full potential linearized augmented plane wave (FLAPW) method. Both the local spin density approximation (LSDA) and the generalized gradient approximation (GGA) were used to treat the exchange and correlation potential. The spin-orbit interaction (SOI) was incorporated using a second variational procedure. The α phase is found to be a semiconductor with an indirect LSDA/GGA band gap of 0.38 eV/0.46 eV compared to 0.76 eV for the observed direct optical gap. For the β phase we have chosen two different ordered structures with extreme occupancies of K and Bi atoms at the {"}mixed sites.{"} The system is found to be a semimetal for both the ordered structures. To incorporate the effect of mixed occupancy we have chosen a 1 × 1 × 2 supercell with an alternative K/Bi occupancy at the mixed sites. The system is a semiconductor with an indirect LSDA/GGA band gap of 0.32 eV/0.41 eV. We find that the mixed occupancy is crucial for the system to be a semiconductor because the Bi atoms at the mixed sites stabilize the p orbitals of the nearest-neighbor Se atoms by lowering their energy. We also find a strong anisotropy in the effective mass near the conduction band minimum, with the smallest effective mass along the mixed K/Bi chains (parallel to the c axis). This large anisotropy suggests that β-K 2Bi 8Se 13 has a great potential for an n-type thermoelectric.",
author = "Bilc, {D. I.} and Mahanti, {S. D.} and T. Kyratsi and Chung, {D. Y.} and Kanatzidis, {Mercouri G} and P. Larson",
year = "2005",
month = "2",
doi = "10.1103/PhysRevB.71.085116",
language = "English",
volume = "71",
journal = "Physical Review B-Condensed Matter",
issn = "1098-0121",
publisher = "American Physical Society",
number = "8",

}

TY - JOUR

T1 - Electronic structure of K 2Bi 8Se 13

AU - Bilc, D. I.

AU - Mahanti, S. D.

AU - Kyratsi, T.

AU - Chung, D. Y.

AU - Kanatzidis, Mercouri G

AU - Larson, P.

PY - 2005/2

Y1 - 2005/2

N2 - K 2Bi 8Se 13 belongs to a class of complex chalcogenides that shows potential for superior thermoelectric performance. This compound forms in two distinct phases, α and β. The β phase, which has several sites with mixed K/Bi occupancy, is a better thermoelectric. To understand the origin of this difference between the two phases we have carried out electronic structure calculations within ab initio density functional theory using the full potential linearized augmented plane wave (FLAPW) method. Both the local spin density approximation (LSDA) and the generalized gradient approximation (GGA) were used to treat the exchange and correlation potential. The spin-orbit interaction (SOI) was incorporated using a second variational procedure. The α phase is found to be a semiconductor with an indirect LSDA/GGA band gap of 0.38 eV/0.46 eV compared to 0.76 eV for the observed direct optical gap. For the β phase we have chosen two different ordered structures with extreme occupancies of K and Bi atoms at the "mixed sites." The system is found to be a semimetal for both the ordered structures. To incorporate the effect of mixed occupancy we have chosen a 1 × 1 × 2 supercell with an alternative K/Bi occupancy at the mixed sites. The system is a semiconductor with an indirect LSDA/GGA band gap of 0.32 eV/0.41 eV. We find that the mixed occupancy is crucial for the system to be a semiconductor because the Bi atoms at the mixed sites stabilize the p orbitals of the nearest-neighbor Se atoms by lowering their energy. We also find a strong anisotropy in the effective mass near the conduction band minimum, with the smallest effective mass along the mixed K/Bi chains (parallel to the c axis). This large anisotropy suggests that β-K 2Bi 8Se 13 has a great potential for an n-type thermoelectric.

AB - K 2Bi 8Se 13 belongs to a class of complex chalcogenides that shows potential for superior thermoelectric performance. This compound forms in two distinct phases, α and β. The β phase, which has several sites with mixed K/Bi occupancy, is a better thermoelectric. To understand the origin of this difference between the two phases we have carried out electronic structure calculations within ab initio density functional theory using the full potential linearized augmented plane wave (FLAPW) method. Both the local spin density approximation (LSDA) and the generalized gradient approximation (GGA) were used to treat the exchange and correlation potential. The spin-orbit interaction (SOI) was incorporated using a second variational procedure. The α phase is found to be a semiconductor with an indirect LSDA/GGA band gap of 0.38 eV/0.46 eV compared to 0.76 eV for the observed direct optical gap. For the β phase we have chosen two different ordered structures with extreme occupancies of K and Bi atoms at the "mixed sites." The system is found to be a semimetal for both the ordered structures. To incorporate the effect of mixed occupancy we have chosen a 1 × 1 × 2 supercell with an alternative K/Bi occupancy at the mixed sites. The system is a semiconductor with an indirect LSDA/GGA band gap of 0.32 eV/0.41 eV. We find that the mixed occupancy is crucial for the system to be a semiconductor because the Bi atoms at the mixed sites stabilize the p orbitals of the nearest-neighbor Se atoms by lowering their energy. We also find a strong anisotropy in the effective mass near the conduction band minimum, with the smallest effective mass along the mixed K/Bi chains (parallel to the c axis). This large anisotropy suggests that β-K 2Bi 8Se 13 has a great potential for an n-type thermoelectric.

UR - http://www.scopus.com/inward/record.url?scp=84856124709&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84856124709&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.71.085116

DO - 10.1103/PhysRevB.71.085116

M3 - Article

AN - SCOPUS:84856124709

VL - 71

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 8

M1 - 085116

ER -